亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultrasound-Based Predictive Model to Assess the Risk of Orbital Malignancies

队列 医学 列线图 超声波 回声 放射科 内科学
作者
Yuli Zhang,Youyi Huang,Jie Bi,Haïyan Zhou,Tao Li,Jingqin Fang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
标识
DOI:10.1016/j.ultrasmedbio.2024.03.007
摘要

ABSTRACT

Objective

Ultrasound (US) is widely used for evaluating various orbital conditions. However, accurately diagnosing malignant orbital masses using US remains challenging. We aimed to develop an ultrasonic feature-based model to predict the presence of malignant tumors in the orbit.

Methods

A total of 510 patients with orbital masses were enrolled between January 2017 and April 2023. They were divided into a development cohort and a validation cohort. In the development cohort (n = 408), the ultrasonic and clinical features with differential values were identified. Based on these features, a predictive model and nomogram were constructed. The diagnostic performance of the model was compared with that of MRI or observers, and further validated in the validation cohort (n = 102).

Results

The involvement of more than two quadrants, irregular shape, extremely low echo of the solid part, presence of echogenic foci, cast-like appearance, and two demographic characteristics (age and sex) were identified as independent features related to malignant tumors of the orbit. The predictive model constructed based on these features exhibited better performance in identifying malignant tumors compared to MRI (AUC = 0.78 [95% CI: 0.73, 0.82] vs. 0.69 [95% CI: 0.64, 0.74], p = 0.03) and observers (AUC = 0.93 [95% CI: 0.90, 0.95] vs. Observer 1, AUC=0.80 [95% CI: 0.76, 0.84], p < 0.01; vs. Observer 2, AUC=0.71 [95% CI: 0.66, 0.76], p < 0.01). In the validation cohort, the predictive model achieved an AUC of 0.88 (95% CI: 0.81, 0.94).

Conclusion

The ultrasonic-clinical feature-based predictive model can accurately identify malignant orbital tumors, offering a convenient approach in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助如沐春风采纳,获得10
3秒前
9秒前
15秒前
爆米花应助Everything采纳,获得10
46秒前
46秒前
yx_cheng应助科研通管家采纳,获得10
48秒前
yx_cheng应助科研通管家采纳,获得10
48秒前
斯文败类应助科研通管家采纳,获得10
48秒前
情怀应助科研通管家采纳,获得10
48秒前
yx_cheng应助科研通管家采纳,获得10
48秒前
Eileen发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助10
1分钟前
Sandy应助Eileen采纳,获得20
1分钟前
muasa关注了科研通微信公众号
1分钟前
爆米花应助狮子采纳,获得10
2分钟前
陈富贵完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
yx_cheng应助科研通管家采纳,获得10
2分钟前
狮子发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
狮子完成签到,获得积分20
3分钟前
HOPING完成签到,获得积分10
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
白樱恋曲完成签到 ,获得积分10
3分钟前
像个间谍发布了新的文献求助10
3分钟前
wenhao完成签到,获得积分10
3分钟前
4分钟前
4分钟前
silence发布了新的文献求助10
4分钟前
silence完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
yx_cheng应助科研通管家采纳,获得10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
lu发布了新的文献求助10
5分钟前
怕孤单的幼荷完成签到 ,获得积分10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008162
求助须知:如何正确求助?哪些是违规求助? 3547980
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188