Ultrasound-Based Predictive Model to Assess the Risk of Orbital Malignancies

队列 医学 列线图 超声波 回声 放射科 内科学
作者
Yuli Zhang,Youyi Huang,Jie Bi,Haïyan Zhou,Tao Li,Jingqin Fang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
标识
DOI:10.1016/j.ultrasmedbio.2024.03.007
摘要

ABSTRACT

Objective

Ultrasound (US) is widely used for evaluating various orbital conditions. However, accurately diagnosing malignant orbital masses using US remains challenging. We aimed to develop an ultrasonic feature-based model to predict the presence of malignant tumors in the orbit.

Methods

A total of 510 patients with orbital masses were enrolled between January 2017 and April 2023. They were divided into a development cohort and a validation cohort. In the development cohort (n = 408), the ultrasonic and clinical features with differential values were identified. Based on these features, a predictive model and nomogram were constructed. The diagnostic performance of the model was compared with that of MRI or observers, and further validated in the validation cohort (n = 102).

Results

The involvement of more than two quadrants, irregular shape, extremely low echo of the solid part, presence of echogenic foci, cast-like appearance, and two demographic characteristics (age and sex) were identified as independent features related to malignant tumors of the orbit. The predictive model constructed based on these features exhibited better performance in identifying malignant tumors compared to MRI (AUC = 0.78 [95% CI: 0.73, 0.82] vs. 0.69 [95% CI: 0.64, 0.74], p = 0.03) and observers (AUC = 0.93 [95% CI: 0.90, 0.95] vs. Observer 1, AUC=0.80 [95% CI: 0.76, 0.84], p < 0.01; vs. Observer 2, AUC=0.71 [95% CI: 0.66, 0.76], p < 0.01). In the validation cohort, the predictive model achieved an AUC of 0.88 (95% CI: 0.81, 0.94).

Conclusion

The ultrasonic-clinical feature-based predictive model can accurately identify malignant orbital tumors, offering a convenient approach in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪山飞龙发布了新的文献求助10
2秒前
牛战士发布了新的文献求助10
2秒前
2秒前
勇往直前完成签到,获得积分10
3秒前
3秒前
ektyz发布了新的文献求助10
4秒前
4秒前
4秒前
席涑发布了新的文献求助30
5秒前
酷波er应助niuma采纳,获得10
6秒前
木易发布了新的文献求助10
6秒前
李赫发布了新的文献求助30
9秒前
SONGYEZI完成签到,获得积分10
11秒前
Ch完成签到 ,获得积分10
11秒前
tt完成签到 ,获得积分10
12秒前
Jasper应助Wu采纳,获得10
13秒前
多吃青菜完成签到,获得积分10
13秒前
14秒前
XL神放发布了新的文献求助10
15秒前
Lee完成签到,获得积分10
15秒前
所所应助1Yer6采纳,获得10
17秒前
汉堡包应助执着的小蘑菇采纳,获得10
17秒前
动人的幻灵应助一池清茶采纳,获得10
18秒前
英俊的铭应助tunacan采纳,获得10
18秒前
19秒前
人之可卿完成签到,获得积分10
20秒前
21秒前
sysi关注了科研通微信公众号
22秒前
ding应助gww采纳,获得10
23秒前
23秒前
龙江游侠完成签到,获得积分10
24秒前
24秒前
24秒前
FashionBoy应助葉12138采纳,获得10
25秒前
无情人达发布了新的文献求助10
26秒前
flysky120发布了新的文献求助10
26秒前
SEBR发布了新的文献求助50
27秒前
27秒前
brd发布了新的文献求助10
27秒前
28秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441382
求助须知:如何正确求助?哪些是违规求助? 3037917
关于积分的说明 8970305
捐赠科研通 2726285
什么是DOI,文献DOI怎么找? 1495405
科研通“疑难数据库(出版商)”最低求助积分说明 691187
邀请新用户注册赠送积分活动 688081