Integration of deep adaptation transfer learning and online sequential extreme learning machine for cross-person and cross-position activity recognition

计算机科学 适应(眼睛) 学习迁移 人工智能 职位(财务) 机器学习 在线学习 极限学习机 人机交互 人工神经网络 心理学 多媒体 财务 经济 神经科学
作者
Quansheng Xu,Xifei Wei,Ruxue Bai,Shiming Li,Meng Zong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118807-118807 被引量:6
标识
DOI:10.1016/j.eswa.2022.118807
摘要

• Deep adaptation transfer learning combined with OS-ELM to handle cross domain HAR. • GAP and SE structure in CNN facilitate feature extraction and adapt to input data. • DANN and DDC have different effects on cross-person and cross-position transfer. • OS-ELM classifier improves HAR accuracy with a few annotated data in target domain. Deep learning (DL) has been evolving to a prevalent method in human activity recognition (HAR). However, the performance of wearable sensor based HAR models decline significantly when training data come from different persons or sensor positions, and a time-consuming data annotation is indispensible to cater for the big-data driven DL models. In this paper we proposed a fast and robust hybrid model to handle the transfer issues of wearable sensor based HAR between different persons (cross-person) and different positions (cross-position) with just a few annotated data in target domain. The model consists of three parts: (1) A convolutional neural network (CNN) with global average pooling layer to facilitate the extraction of advanced common features in source domain and target domain; (2) A domain adaptive neural network with a gradient reversal layer (DANN) and deep domain confusion network with an adaptive layer (DDC) to reduce domain shift caused by the change of persons and sensor positions; (3) An adaptive classifier based on online sequential extreme learning machine (OS-ELM) to achieve fast and accurate classification with a few annotated data in target domain. Experimental results on four public datasets verified the superiority of the proposed hybrid model over standard CNN and deep transfer learning models in adapting the classifier to new sensor locations and subjects quickly, where the HAR accuracy can be improved by at least 12% for cross-person transfer and 20% for cross-position transfer, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ranqi完成签到,获得积分10
1秒前
Betsy发布了新的文献求助10
1秒前
4秒前
英姑应助安静碧灵采纳,获得10
7秒前
7秒前
8秒前
8秒前
科研三井泽完成签到,获得积分10
8秒前
嚣张的小张完成签到,获得积分10
10秒前
王桑完成签到 ,获得积分10
10秒前
Murphy完成签到,获得积分10
10秒前
ven完成签到,获得积分20
11秒前
丘比特应助小文cremen采纳,获得10
11秒前
拉长的远山完成签到,获得积分10
12秒前
牛幻香完成签到,获得积分10
12秒前
嘿嘿发布了新的文献求助10
13秒前
安静碧灵完成签到,获得积分10
14秒前
任梓宁发布了新的文献求助10
14秒前
theday完成签到,获得积分10
14秒前
15秒前
17秒前
小白又鹏发布了新的文献求助10
17秒前
jjx1005发布了新的文献求助10
17秒前
完美世界应助ven采纳,获得10
17秒前
万能图书馆应助冷语采纳,获得10
18秒前
尧羲完成签到,获得积分10
20秒前
金桔儿发布了新的文献求助30
20秒前
米西米西完成签到 ,获得积分10
22秒前
糖果乖乖完成签到 ,获得积分10
23秒前
善学以致用应助Grant采纳,获得10
25秒前
26秒前
kai完成签到 ,获得积分10
27秒前
大蜥蜴完成签到,获得积分10
29秒前
小白又鹏完成签到,获得积分10
29秒前
Owen应助早上好采纳,获得10
31秒前
31秒前
读心理学导致的完成签到,获得积分10
32秒前
JX发布了新的文献求助10
32秒前
西柚发布了新的文献求助10
32秒前
demi应助Sharkshain采纳,获得10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813685
关于积分的说明 7901577
捐赠科研通 2473296
什么是DOI,文献DOI怎么找? 1316715
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175