Integration of deep adaptation transfer learning and online sequential extreme learning machine for cross-person and cross-position activity recognition

计算机科学 适应(眼睛) 学习迁移 人工智能 职位(财务) 机器学习 在线学习 极限学习机 人机交互 人工神经网络 心理学 多媒体 财务 神经科学 经济
作者
Quansheng Xu,Xifei Wei,Ruxue Bai,Shiming Li,Meng Zong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118807-118807 被引量:6
标识
DOI:10.1016/j.eswa.2022.118807
摘要

• Deep adaptation transfer learning combined with OS-ELM to handle cross domain HAR. • GAP and SE structure in CNN facilitate feature extraction and adapt to input data. • DANN and DDC have different effects on cross-person and cross-position transfer. • OS-ELM classifier improves HAR accuracy with a few annotated data in target domain. Deep learning (DL) has been evolving to a prevalent method in human activity recognition (HAR). However, the performance of wearable sensor based HAR models decline significantly when training data come from different persons or sensor positions, and a time-consuming data annotation is indispensible to cater for the big-data driven DL models. In this paper we proposed a fast and robust hybrid model to handle the transfer issues of wearable sensor based HAR between different persons (cross-person) and different positions (cross-position) with just a few annotated data in target domain. The model consists of three parts: (1) A convolutional neural network (CNN) with global average pooling layer to facilitate the extraction of advanced common features in source domain and target domain; (2) A domain adaptive neural network with a gradient reversal layer (DANN) and deep domain confusion network with an adaptive layer (DDC) to reduce domain shift caused by the change of persons and sensor positions; (3) An adaptive classifier based on online sequential extreme learning machine (OS-ELM) to achieve fast and accurate classification with a few annotated data in target domain. Experimental results on four public datasets verified the superiority of the proposed hybrid model over standard CNN and deep transfer learning models in adapting the classifier to new sensor locations and subjects quickly, where the HAR accuracy can be improved by at least 12% for cross-person transfer and 20% for cross-position transfer, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助hjj采纳,获得10
刚刚
susu完成签到,获得积分10
1秒前
2秒前
caicai发布了新的文献求助10
2秒前
无情的菲鹰完成签到,获得积分10
2秒前
兔兔完成签到 ,获得积分10
2秒前
打打应助勤奋的蜗牛采纳,获得10
2秒前
3秒前
jery完成签到,获得积分10
3秒前
乐乐应助润润轩轩采纳,获得10
4秒前
指哪打哪完成签到,获得积分10
4秒前
弄井发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
5秒前
Wing完成签到 ,获得积分10
6秒前
R先生发布了新的文献求助10
6秒前
科研小白发布了新的文献求助10
6秒前
年三月完成签到 ,获得积分10
7秒前
lb完成签到,获得积分20
7秒前
7秒前
香蕉觅云应助叶飞荷采纳,获得10
8秒前
flow发布了新的文献求助10
9秒前
穆仰应助li采纳,获得10
9秒前
班尼肥鸭完成签到 ,获得积分10
9秒前
噔噔噔噔发布了新的文献求助10
9秒前
bkagyin应助ffff采纳,获得10
9秒前
000完成签到,获得积分10
9秒前
9秒前
Anxinxin发布了新的文献求助20
10秒前
10秒前
Ych完成签到,获得积分20
11秒前
lai发布了新的文献求助10
11秒前
彭彭发布了新的文献求助10
11秒前
ggb完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762