Hybrid inverse design of photonic structures by combining optimization methods with neural networks

计算机科学 光子学 人工神经网络 利用 拓扑优化 领域(数学) 反向 人工智能 工程类 有限元法 数学 物理 几何学 计算机安全 结构工程 纯数学 光学
作者
Lin Deng,Yihao Xu,Yongmin Liu
出处
期刊:Photonics and Nanostructures: Fundamentals and Applications [Elsevier]
卷期号:52: 101073-101073 被引量:1
标识
DOI:10.1016/j.photonics.2022.101073
摘要

Over the past decades, classical optimization methods, including gradient-based topology optimization and the evolutionary algorithm, have been widely employed for the inverse design of various photonic structures and devices, while very recently neural networks have emerged as one powerful tool for the same purpose. Although these techniques have demonstrated their superiority to some extent compared to the conventional numerical simulations, each of them still has its own imitations. To fully exploit the potential of intelligent optical design, researchers have proposed to integrate optimization methods with neural networks, so that they can work coordinately to further boost the efficiency, accuracy and capability for more complicated design tasks. In this mini-review, we will highlight some representative examples of the hybrid models to show their working principles and unique proprieties. • This review article focuses on the hybrid models that combines neural networks with other classical optimization algorithms for photonic design. • It provides specific examples of different types of hybrid models, and discusses their unique advantages for improving the performances of the design models and photonic devices. • It provides adequate information about the recent progress, and motivate researchers with diverse backgrounds to contribute to this emergent field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leey发布了新的文献求助10
刚刚
kendrick677完成签到,获得积分10
刚刚
刚刚
yanghua完成签到 ,获得积分10
刚刚
科研通AI6应助枫落采纳,获得10
刚刚
情怀应助枫落采纳,获得10
刚刚
Akim应助cc采纳,获得10
刚刚
1秒前
HtheJ完成签到,获得积分10
1秒前
2秒前
无极微光应助YU采纳,获得20
2秒前
xm完成签到,获得积分10
2秒前
2秒前
章章完成签到 ,获得积分10
2秒前
2秒前
lin完成签到,获得积分10
2秒前
希望天下0贩的0应助三木采纳,获得10
2秒前
rene1应助谦让蜜蜂采纳,获得10
2秒前
2秒前
3秒前
3秒前
suanxiangxiang完成签到 ,获得积分10
3秒前
redking完成签到,获得积分10
4秒前
星辰大海应助FJLSDNMV采纳,获得10
4秒前
wanci应助眯眯眼的谷冬采纳,获得30
4秒前
4秒前
兰金完成签到,获得积分10
5秒前
5秒前
5秒前
善学以致用应助zhendezy采纳,获得20
6秒前
6秒前
6秒前
7秒前
小前途发布了新的文献求助10
7秒前
7秒前
慕青应助机灵安白采纳,获得10
8秒前
龙行天下发布了新的文献求助30
8秒前
8秒前
健康的友儿完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441