Hybrid inverse design of photonic structures by combining optimization methods with neural networks

计算机科学 光子学 人工神经网络 利用 拓扑优化 领域(数学) 反向 人工智能 工程类 有限元法 数学 物理 几何学 计算机安全 结构工程 纯数学 光学
作者
Lin Deng,Yihao Xu,Yongmin Liu
出处
期刊:Photonics and Nanostructures: Fundamentals and Applications [Elsevier]
卷期号:52: 101073-101073 被引量:1
标识
DOI:10.1016/j.photonics.2022.101073
摘要

Over the past decades, classical optimization methods, including gradient-based topology optimization and the evolutionary algorithm, have been widely employed for the inverse design of various photonic structures and devices, while very recently neural networks have emerged as one powerful tool for the same purpose. Although these techniques have demonstrated their superiority to some extent compared to the conventional numerical simulations, each of them still has its own imitations. To fully exploit the potential of intelligent optical design, researchers have proposed to integrate optimization methods with neural networks, so that they can work coordinately to further boost the efficiency, accuracy and capability for more complicated design tasks. In this mini-review, we will highlight some representative examples of the hybrid models to show their working principles and unique proprieties. • This review article focuses on the hybrid models that combines neural networks with other classical optimization algorithms for photonic design. • It provides specific examples of different types of hybrid models, and discusses their unique advantages for improving the performances of the design models and photonic devices. • It provides adequate information about the recent progress, and motivate researchers with diverse backgrounds to contribute to this emergent field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
halfling完成签到 ,获得积分10
1秒前
上官若男应助Zzz采纳,获得10
1秒前
陈博士完成签到,获得积分10
1秒前
1秒前
慕青应助干净的迎荷采纳,获得10
2秒前
ChaseY发布了新的文献求助10
2秒前
2秒前
爆米花应助暴躁的咖啡采纳,获得10
2秒前
2秒前
sakiecon完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
SSS发布了新的文献求助10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
erg发布了新的文献求助10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
pgfx1993发布了新的文献求助10
4秒前
科研通AI6应助抱拳了铁子采纳,获得10
4秒前
5秒前
九一完成签到,获得积分10
5秒前
5秒前
李爱国应助陈博士采纳,获得10
5秒前
5秒前
6秒前
lili完成签到 ,获得积分10
6秒前
Lunar611发布了新的文献求助10
6秒前
7秒前
Amandar发布了新的文献求助10
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511347
求助须知:如何正确求助?哪些是违规求助? 4605975
关于积分的说明 14496623
捐赠科研通 4541144
什么是DOI,文献DOI怎么找? 2488347
邀请新用户注册赠送积分活动 1470484
关于科研通互助平台的介绍 1442859