计算机科学
突出
人工智能
抛光
特征(语言学)
计算机视觉
模式识别(心理学)
光学(聚焦)
杂乱
目标检测
对象(语法)
特征提取
标杆管理
工程类
光学
物理
业务
语言学
雷达
营销
电信
哲学
机械工程
作者
Huihui Yue,Jichang Guo,Xiangjun Yin,Yi Zhang,Sida Zheng,Zenan Zhang,Chongyi Li
标识
DOI:10.1016/j.knosys.2022.109938
摘要
Salient object detection under low-light conditions remains a challenge in many practical applications. Most recent works focus on feature integration without considering filtering out clutter from the darkness, thus limiting the detection performance. To tackle this issue, we propose a low-light image salient object detection network (LLISOD), which generates highly accurate saliency maps by functional optimization-inspired feature polishing strategy. The LLISOD includes: (1) An unfolded implicit nonlinear mapping (UINM) module uniquely designed for polishing feature maps; and (2) the hierarchical feature polishing (HFP) streams proposed for fusing the outputs of the UINM module on the top-down pathway to refine the saliency predictions. Furthermore, we provide a new dataset for benchmarking the investigation of salient object detection in low-light images. Extensive experiments demonstrate that our method outperforms existing state-of-the-art approaches. Code will be available at https://github.com/yuehuihui000/LLISOD.
科研通智能强力驱动
Strongly Powered by AbleSci AI