亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diffusion-Based Multiphase Multicomponent Modeling of Cyclic Solvent Injection in Ultratight Reservoirs

分子扩散 扩散 粘度 热扩散率 热力学 压力梯度 材料科学 溶剂 扩散方程 努森扩散 相(物质) 纳米孔 焊剂(冶金) 机械 化学 努森数 纳米技术 有机化学 物理 公制(单位) 运营管理 经济 经济 服务(商务)
作者
Ming Ma,Hamid Emami‐Meybodi
标识
DOI:10.2118/210480-ms
摘要

Abstract The cyclic solvent (gas) injection has been proved as an economical and effective method to enhance oil recovery in ultratight reservoirs such as shales. However, accurate modeling of cyclic solvent injection has been challenging due to the complex nature of fluid transport in these nanoporous media. Most models are developed based on Darcy's and Fick's laws, which do not capture some critical transport phenomena within nanopores at reservoir conditions. Accordingly, we develop a predictive numerical model encapsulating key transport mechanisms for cyclic solvent injection in ultratight reservoirs. The model is developed based on the binary friction concept that incorporates friction between different fluid molecules as well as fluid molecules and pore walls. The Maxwell-Stefan approach is employed to account for the friction among fluid molecules. The friction between molecules and pore walls is incorporated through partial viscosity and Knudsen diffusivity. A general driving force, chemical potential gradient, is considered for the transport of non-ideal fluid mixtures in ultratight reservoirs. The Peng-Robinson equation of state with confinement effect is used for the phase behavior calculations. The total flux consists of multicomponent molecular diffusion flux resulting from the chemical potential gradient and pressure diffusion flux driven by the pressure gradient. The governing equations for composition and pressure are solved implicitly using the finite difference method. After conducting time-step and grid-size sensitivity analysis, the developed model is validated against analytical solutions and experimental data. The primary production and solvent injection process are then simulated for a trinary oil (CH4, C4H10, and C12H26) and two solvent types (CH4 and CO2). The results show that the transport of hydrocarbon components in the vapor phase is faster than in the liquid phase due to the higher component transmissibilities in the vapor phase. Accordingly, light and heavy components are produced at different rates during primary production since the vapor phase mainly consists of lighter components. For the single-cycle solvent injection cases, CO2 and CH4 improve hydrocarbon recovery, with CO2 slightly performing better than CH4. This is attributed to CO2's ability to extract more intermediate and heavy components into the vapor phase as compared with CH4. The recovery factor of heavy components after CO2 injection (6.2%) is higher than that of CH4 injection (5.9%). For multi-cycle solvent injection cases, the incremental hydrocarbon recovery (0.7%) is slightly better for CO2 injection than CH4 injection (0.3%). Furthermore, the results reveal that CO2 cyclic injection results in producing more intermediate and heavy components from the matrix region in the vicinity of the fracture, while CH4 cyclic injection extracts more light components. The bottomhole pressure sensitivity analysis results indicate that the CH4 injection performance is better under single-phase conditions, while CO2 performance is better under two-phase conditions. Finally, the soaking-time sensitivity analysis results show that the solvent recycling rate decreases and the incremental recovery per cycle increases as the soaking time increases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
朴蒲萤荧完成签到,获得积分10
40秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
wanci应助可靠的寒风采纳,获得10
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
可乐完成签到,获得积分20
1分钟前
sun给sun的求助进行了留言
1分钟前
1分钟前
NattyPoe完成签到,获得积分10
1分钟前
大模型应助子月之路采纳,获得10
1分钟前
英姑应助George采纳,获得30
1分钟前
skotrie189完成签到,获得积分10
2分钟前
2分钟前
George发布了新的文献求助30
2分钟前
2分钟前
Abdurrahman完成签到,获得积分10
2分钟前
李健应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
sun发布了新的文献求助10
3分钟前
3分钟前
娟子完成签到,获得积分10
3分钟前
pgdddh完成签到,获得积分10
3分钟前
领导范儿应助daggeraxe采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
cc完成签到 ,获得积分10
4分钟前
zxcvvbb1001完成签到 ,获得积分10
4分钟前
andrele应助科研通管家采纳,获得10
5分钟前
乐乐应助科研通管家采纳,获得10
5分钟前
所所应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
小透明发布了新的文献求助10
5分钟前
5分钟前
清泉发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862074
关于积分的说明 15107753
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581890
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494399