Diffusion-Based Multiphase Multicomponent Modeling of Cyclic Solvent Injection in Ultratight Reservoirs

分子扩散 扩散 粘度 热扩散率 热力学 压力梯度 材料科学 溶剂 扩散方程 努森扩散 相(物质) 纳米孔 焊剂(冶金) 机械 化学 努森数 纳米技术 有机化学 物理 公制(单位) 运营管理 经济 经济 服务(商务)
作者
Ming Ma,Hamid Emami‐Meybodi
标识
DOI:10.2118/210480-ms
摘要

Abstract The cyclic solvent (gas) injection has been proved as an economical and effective method to enhance oil recovery in ultratight reservoirs such as shales. However, accurate modeling of cyclic solvent injection has been challenging due to the complex nature of fluid transport in these nanoporous media. Most models are developed based on Darcy's and Fick's laws, which do not capture some critical transport phenomena within nanopores at reservoir conditions. Accordingly, we develop a predictive numerical model encapsulating key transport mechanisms for cyclic solvent injection in ultratight reservoirs. The model is developed based on the binary friction concept that incorporates friction between different fluid molecules as well as fluid molecules and pore walls. The Maxwell-Stefan approach is employed to account for the friction among fluid molecules. The friction between molecules and pore walls is incorporated through partial viscosity and Knudsen diffusivity. A general driving force, chemical potential gradient, is considered for the transport of non-ideal fluid mixtures in ultratight reservoirs. The Peng-Robinson equation of state with confinement effect is used for the phase behavior calculations. The total flux consists of multicomponent molecular diffusion flux resulting from the chemical potential gradient and pressure diffusion flux driven by the pressure gradient. The governing equations for composition and pressure are solved implicitly using the finite difference method. After conducting time-step and grid-size sensitivity analysis, the developed model is validated against analytical solutions and experimental data. The primary production and solvent injection process are then simulated for a trinary oil (CH4, C4H10, and C12H26) and two solvent types (CH4 and CO2). The results show that the transport of hydrocarbon components in the vapor phase is faster than in the liquid phase due to the higher component transmissibilities in the vapor phase. Accordingly, light and heavy components are produced at different rates during primary production since the vapor phase mainly consists of lighter components. For the single-cycle solvent injection cases, CO2 and CH4 improve hydrocarbon recovery, with CO2 slightly performing better than CH4. This is attributed to CO2's ability to extract more intermediate and heavy components into the vapor phase as compared with CH4. The recovery factor of heavy components after CO2 injection (6.2%) is higher than that of CH4 injection (5.9%). For multi-cycle solvent injection cases, the incremental hydrocarbon recovery (0.7%) is slightly better for CO2 injection than CH4 injection (0.3%). Furthermore, the results reveal that CO2 cyclic injection results in producing more intermediate and heavy components from the matrix region in the vicinity of the fracture, while CH4 cyclic injection extracts more light components. The bottomhole pressure sensitivity analysis results indicate that the CH4 injection performance is better under single-phase conditions, while CO2 performance is better under two-phase conditions. Finally, the soaking-time sensitivity analysis results show that the solvent recycling rate decreases and the incremental recovery per cycle increases as the soaking time increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
添添发布了新的文献求助10
刚刚
刚刚
happily遇发布了新的文献求助10
2秒前
3秒前
weiv发布了新的文献求助10
4秒前
何包蛋完成签到,获得积分10
4秒前
御坂10576号完成签到 ,获得积分10
5秒前
5秒前
7秒前
情谊超爷完成签到,获得积分10
8秒前
机灵铭完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
MM完成签到,获得积分10
12秒前
pure完成签到 ,获得积分10
12秒前
浮游应助Su_Zehe采纳,获得10
12秒前
李健应助拼搏的学长采纳,获得10
14秒前
WXR发布了新的文献求助30
14秒前
何包蛋发布了新的文献求助10
15秒前
华仔应助留胡子的白柏采纳,获得30
15秒前
16秒前
大个应助邵shuo采纳,获得10
16秒前
普里克先森完成签到 ,获得积分10
18秒前
19秒前
123完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
Owen应助阿华采纳,获得30
21秒前
21秒前
PetrichorF完成签到 ,获得积分10
21秒前
顺利发布了新的文献求助10
22秒前
科研通AI2S应助闹闹加油采纳,获得30
22秒前
23秒前
阿不思完成签到 ,获得积分10
24秒前
123发布了新的文献求助10
24秒前
852应助123456采纳,获得10
26秒前
zwxzghgz完成签到,获得积分10
26秒前
28秒前
拼搏的学长完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421856
求助须知:如何正确求助?哪些是违规求助? 4536767
关于积分的说明 14155159
捐赠科研通 4453354
什么是DOI,文献DOI怎么找? 2442854
邀请新用户注册赠送积分活动 1434227
关于科研通互助平台的介绍 1411370