已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diffusion-Based Multiphase Multicomponent Modeling of Cyclic Solvent Injection in Ultratight Reservoirs

分子扩散 扩散 粘度 热扩散率 热力学 压力梯度 材料科学 溶剂 扩散方程 努森扩散 相(物质) 纳米孔 焊剂(冶金) 机械 化学 努森数 纳米技术 有机化学 物理 经济 公制(单位) 经济 服务(商务) 运营管理
作者
Ming Ma,Hamid Emami‐Meybodi
标识
DOI:10.2118/210480-ms
摘要

Abstract The cyclic solvent (gas) injection has been proved as an economical and effective method to enhance oil recovery in ultratight reservoirs such as shales. However, accurate modeling of cyclic solvent injection has been challenging due to the complex nature of fluid transport in these nanoporous media. Most models are developed based on Darcy's and Fick's laws, which do not capture some critical transport phenomena within nanopores at reservoir conditions. Accordingly, we develop a predictive numerical model encapsulating key transport mechanisms for cyclic solvent injection in ultratight reservoirs. The model is developed based on the binary friction concept that incorporates friction between different fluid molecules as well as fluid molecules and pore walls. The Maxwell-Stefan approach is employed to account for the friction among fluid molecules. The friction between molecules and pore walls is incorporated through partial viscosity and Knudsen diffusivity. A general driving force, chemical potential gradient, is considered for the transport of non-ideal fluid mixtures in ultratight reservoirs. The Peng-Robinson equation of state with confinement effect is used for the phase behavior calculations. The total flux consists of multicomponent molecular diffusion flux resulting from the chemical potential gradient and pressure diffusion flux driven by the pressure gradient. The governing equations for composition and pressure are solved implicitly using the finite difference method. After conducting time-step and grid-size sensitivity analysis, the developed model is validated against analytical solutions and experimental data. The primary production and solvent injection process are then simulated for a trinary oil (CH4, C4H10, and C12H26) and two solvent types (CH4 and CO2). The results show that the transport of hydrocarbon components in the vapor phase is faster than in the liquid phase due to the higher component transmissibilities in the vapor phase. Accordingly, light and heavy components are produced at different rates during primary production since the vapor phase mainly consists of lighter components. For the single-cycle solvent injection cases, CO2 and CH4 improve hydrocarbon recovery, with CO2 slightly performing better than CH4. This is attributed to CO2's ability to extract more intermediate and heavy components into the vapor phase as compared with CH4. The recovery factor of heavy components after CO2 injection (6.2%) is higher than that of CH4 injection (5.9%). For multi-cycle solvent injection cases, the incremental hydrocarbon recovery (0.7%) is slightly better for CO2 injection than CH4 injection (0.3%). Furthermore, the results reveal that CO2 cyclic injection results in producing more intermediate and heavy components from the matrix region in the vicinity of the fracture, while CH4 cyclic injection extracts more light components. The bottomhole pressure sensitivity analysis results indicate that the CH4 injection performance is better under single-phase conditions, while CO2 performance is better under two-phase conditions. Finally, the soaking-time sensitivity analysis results show that the solvent recycling rate decreases and the incremental recovery per cycle increases as the soaking time increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunshine*完成签到,获得积分20
3秒前
Sunshine*发布了新的文献求助10
7秒前
11秒前
buno应助香蕉白容采纳,获得10
12秒前
举个栗子发布了新的文献求助10
12秒前
科研通AI2S应助完美的海秋采纳,获得10
14秒前
Orange应助Jerrycrazy采纳,获得10
15秒前
17秒前
18秒前
啊啊啊lei发布了新的文献求助10
18秒前
简单完成签到 ,获得积分10
19秒前
脑洞疼应助lyf_cq采纳,获得10
21秒前
21秒前
举个栗子完成签到,获得积分10
23秒前
哟252发布了新的文献求助10
23秒前
哇哇哇哇发布了新的文献求助10
24秒前
ss发布了新的文献求助10
24秒前
24秒前
17关注了科研通微信公众号
25秒前
26秒前
27秒前
科研通AI2S应助香蕉白容采纳,获得10
28秒前
科研通AI2S应助完美的海秋采纳,获得10
28秒前
28秒前
Jerrycrazy完成签到,获得积分10
28秒前
小蘑菇应助咚咚采纳,获得30
29秒前
30秒前
孤独梦安发布了新的文献求助10
30秒前
我是大兴发布了新的文献求助10
34秒前
在水一方应助su采纳,获得10
36秒前
37秒前
38秒前
囿于昼夜发布了新的文献求助10
42秒前
42秒前
43秒前
KDS驳回了双黄应助
44秒前
pakkkho发布了新的文献求助10
46秒前
寒食应助哇哇哇哇采纳,获得10
47秒前
囿于昼夜完成签到,获得积分10
47秒前
48秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265338
求助须知:如何正确求助?哪些是违规求助? 2905273
关于积分的说明 8333247
捐赠科研通 2575616
什么是DOI,文献DOI怎么找? 1399971
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471