Li metal batteries (LMBs) employing conversion cathode materials (e.g., FeF3) are a promising way to prepare inexpensive, environmentally friendly batteries with high energy density. Pseudo-solid state ionogel separators harness the energy density and safety advantages of solid state LMBs, while alleviating key drawbacks (e.g., poor ionic conductivity and high interfacial resistance). In this work, a pseudo-solid state conversion battery (Li-FeF3) is presented that achieves stable, high rate (1.0 mA cm-2) cycling at room temperature. The batteries described herein contain gel-infiltrated FeF3 cathodes prepared by exchanging the ionic liquid in a polymer ionogel with a localized high concentration electrolyte (LHCE). The LHCE gel merges the benefits of a flexible separator (e.g., adaptation to conversion-related volume changes) with the excellent chemical stability and high ionic conductivity (~2 mS cm-1 at 25°C) of an LHCE. The latter property is in contrast to previous solid state iron fluoride batteries, where poor ionic conductivities necessitated elevated temperatures to realize practical power levels. The stable, room temperature Li-FeF3 cycling performance obtained with the LHCE gel at high current densities paves the way for exploring a range of architectures including flexible, three-dimensional, and custom shape batteries.