Air-CSL: Chinese Sign Language Recognition Based on the Commercial WiFi Devices

计算机科学 手势 手势识别 手语 稳健性(进化) 隐马尔可夫模型 人工智能 语音识别 模式识别(心理学) 哲学 语言学 生物化学 化学 基因
作者
Honghong Chen,Danyang Feng,Zhanjun Hao,Xiaochao Dang,Juan Niu,Zhiqiang Qiao
出处
期刊:Wireless Communications and Mobile Computing [Hindawi Limited]
卷期号:2022: 1-16 被引量:3
标识
DOI:10.1155/2022/5885475
摘要

Artificial intelligence and Internet of Things (IoT) devices are experiencing explosive growth. Currently, the commonly used gesture recognition methods are difficult to deploy and expensive, so this paper uses the Channel State Information (CSI) for Chinese sign language recognition. Aiming at the problems of current gesture recognition methods, such as strong personnel dependence, high computational resource consumption, and low robustness, we proposed a Chinese sign language gesture recognition method named Air-CSL. In this method, the Local Outlier Factor (LOF) removal algorithm and the Discrete Wavelet Transform (DWT) are used to reduce the noise in the data, and the subcarriers that best represent the gesture data are selected by principal component analysis. After denoising, mathematical statistics were extracted from the gesture waveform as the eigenvalues, and the features were fused by the Deep Restricted Boltzmann Machine (DBM). Finally, the result of gesture classification and recognition is obtained by the Gated Recurrent Unit (GRU). In this way, the prediction model realizes as well as the classification of sign language gestures. The results show that the proposed method can effectively recognize Chinese sign language gestures of different people in different environments and has good robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyx发布了新的文献求助10
1秒前
LISSU完成签到 ,获得积分10
2秒前
爆米花应助荒年采纳,获得10
3秒前
3秒前
zzz完成签到,获得积分20
5秒前
aaa发布了新的文献求助10
5秒前
FashionBoy应助榛子酱采纳,获得10
6秒前
可爱的函函应助曾水采纳,获得10
6秒前
7秒前
领导范儿应助平淡萤采纳,获得30
7秒前
Lucas应助Rando采纳,获得10
8秒前
10秒前
帅b发布了新的文献求助10
10秒前
夜安发布了新的文献求助10
10秒前
10秒前
细草微风岸完成签到,获得积分10
12秒前
12秒前
12秒前
所所应助一杯半茶采纳,获得10
13秒前
身体健康发布了新的文献求助30
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
科研通AI6应助务实的芷波采纳,获得10
15秒前
身斜不怕尹子正完成签到,获得积分10
16秒前
辛雨凡发布了新的文献求助10
16秒前
平淡萤完成签到,获得积分10
16秒前
慕青应助blueslow采纳,获得10
17秒前
吴鑫灿njmu完成签到,获得积分10
17秒前
荒年发布了新的文献求助10
17秒前
吴洲凤发布了新的文献求助10
17秒前
18秒前
Zggzs发布了新的文献求助10
19秒前
20秒前
20秒前
小二郎应助zhuli采纳,获得10
22秒前
Owen应助李治稳采纳,获得10
23秒前
23秒前
支舟完成签到,获得积分10
23秒前
乐乐应助七个丸子采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675597
求助须知:如何正确求助?哪些是违规求助? 4947581
关于积分的说明 15153918
捐赠科研通 4834916
什么是DOI,文献DOI怎么找? 2589694
邀请新用户注册赠送积分活动 1543483
关于科研通互助平台的介绍 1501233