Air-CSL: Chinese Sign Language Recognition Based on the Commercial WiFi Devices

计算机科学 手势 手势识别 手语 稳健性(进化) 隐马尔可夫模型 人工智能 语音识别 模式识别(心理学) 哲学 语言学 生物化学 化学 基因
作者
Honghong Chen,Danyang Feng,Zhanjun Hao,Xiaochao Dang,Juan Niu,Zhiqiang Qiao
出处
期刊:Wireless Communications and Mobile Computing [Wiley]
卷期号:2022: 1-16 被引量:3
标识
DOI:10.1155/2022/5885475
摘要

Artificial intelligence and Internet of Things (IoT) devices are experiencing explosive growth. Currently, the commonly used gesture recognition methods are difficult to deploy and expensive, so this paper uses the Channel State Information (CSI) for Chinese sign language recognition. Aiming at the problems of current gesture recognition methods, such as strong personnel dependence, high computational resource consumption, and low robustness, we proposed a Chinese sign language gesture recognition method named Air-CSL. In this method, the Local Outlier Factor (LOF) removal algorithm and the Discrete Wavelet Transform (DWT) are used to reduce the noise in the data, and the subcarriers that best represent the gesture data are selected by principal component analysis. After denoising, mathematical statistics were extracted from the gesture waveform as the eigenvalues, and the features were fused by the Deep Restricted Boltzmann Machine (DBM). Finally, the result of gesture classification and recognition is obtained by the Gated Recurrent Unit (GRU). In this way, the prediction model realizes as well as the classification of sign language gestures. The results show that the proposed method can effectively recognize Chinese sign language gestures of different people in different environments and has good robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wmn完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Ry0_完成签到,获得积分10
5秒前
沉静冰夏完成签到 ,获得积分10
5秒前
Desperado完成签到,获得积分10
5秒前
贾克斯发布了新的文献求助10
6秒前
6秒前
江苏大学完成签到,获得积分20
6秒前
完美世界应助明月清风采纳,获得10
6秒前
可爱的函函应助刘恋采纳,获得10
6秒前
浮游应助抽疯的电风扇13采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
Lucas完成签到,获得积分10
7秒前
荷京发布了新的文献求助10
8秒前
cjjcdt发布了新的文献求助10
9秒前
9秒前
10秒前
Tian发布了新的文献求助10
10秒前
大模型应助懵懂的冰凡采纳,获得10
11秒前
完美世界应助研友_enP05n采纳,获得10
11秒前
丘比特应助研友_enP05n采纳,获得10
11秒前
科目三应助研友_enP05n采纳,获得10
11秒前
14秒前
可爱的函函应助贾克斯采纳,获得10
14秒前
丘比特应助你雕姐采纳,获得10
14秒前
ceeray23发布了新的文献求助20
14秒前
CodeCraft应助自由抽屉采纳,获得10
14秒前
华仔应助pogia采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
15秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
lucky应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
15秒前
今后应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得100
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079