Convolution Neural Networks and Targeted Fluorescent Nanoparticles to Detect and ICDAS Score Caries

牙科 齿面 医学 病变 立体显微镜 材料科学 生物医学工程 病理
作者
Kai A. Jones,Nathan Jones,Lívia Maria Andaló Tenuta,Wendy Bloembergen,Susan E. Flannagan,Carlos González-Cabezas,Brian H. Clarkson,Li-Chi Pan,Joerg Lahann,Steven Bloembergen
出处
期刊:Caries Research [Karger Publishers]
卷期号:56 (4): 419-428 被引量:2
标识
DOI:10.1159/000527118
摘要

Previous work has shown targeted fluorescent starch nanoparticles (TFSNs) can label the subsurface of carious lesions and assist dental professionals in the diagnostic process. In this study, we aimed to evaluate the potential of using artificial intelligence (AI) to detect and score carious lesions using ICDAS in combination with fluorescent imaging following application of TFSNs on teeth with a range of lesion severities, using ICDAS-labeled images as the reference standard. A total of 130 extracted human teeth with ICDAS scores from 0 to 6 were selected by a calibrated cariologist. Then, the same surface was imaged with a stereomicroscope under white light illumination, without visible fluorescence, and blue light illumination with an orange filter following application of the TFSNs. Both sets of images were labeled by another blinded ICDAS-calibrated cariologist to demarcate lesion position and severity. Convolutional neural networks, state-of-the-art models in imaging AI, were trained to determine the presence, location, ICDAS score (severity), and lesion surface porosity (as an indicator of activity) of carious lesions, and tested by 30 k-fold validation for white light, blue light, and the combined image sets. The best models showed high performance for the detection of carious lesions (sensitivity 80.26%, PPV 76.36%), potential for determining the severity via ICDAS scoring (accuracy 72%, SD 5.67%), and the detection of surface porosity as an indicator of the activity of the lesions (accuracy 90%, SD 7.00%). More broadly, the combination of targeted biopolymer nanoparticles with imaging AI is a promising combination of novel technologies that could be applied to many other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lalala发布了新的文献求助10
刚刚
1秒前
小曹硕士完成签到,获得积分20
1秒前
超帅谷芹发布了新的文献求助10
2秒前
2秒前
希望天下0贩的0应助yang采纳,获得10
2秒前
2秒前
CIOOICO1发布了新的文献求助10
4秒前
5秒前
饱满服饰发布了新的文献求助10
5秒前
慕白发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
siyuan发布了新的文献求助10
7秒前
你长得很下饭所以完成签到,获得积分10
8秒前
旱田蜗牛完成签到,获得积分10
8秒前
999999完成签到,获得积分20
8秒前
隐形曼青应助砂糖采纳,获得10
8秒前
山丘发布了新的文献求助10
9秒前
9秒前
Tourist应助爱拉臭粑采纳,获得10
9秒前
JamesPei应助鱼儿123采纳,获得30
9秒前
10秒前
夏儿完成签到,获得积分10
11秒前
lalala完成签到,获得积分10
11秒前
慕青应助绝不熬夜到2点采纳,获得10
11秒前
Troyl发布了新的文献求助10
11秒前
999999发布了新的文献求助10
12秒前
12秒前
薛言发布了新的文献求助30
13秒前
13秒前
Joyce完成签到,获得积分10
13秒前
慕白完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
yaoyao应助ahxb采纳,获得10
14秒前
roro熊完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084648
求助须知:如何正确求助?哪些是违规求助? 4301274
关于积分的说明 13402455
捐赠科研通 4125720
什么是DOI,文献DOI怎么找? 2259524
邀请新用户注册赠送积分活动 1263746
关于科研通互助平台的介绍 1197909