Convolution Neural Networks and Targeted Fluorescent Nanoparticles to Detect and ICDAS Score Caries

牙科 齿面 医学 病变 立体显微镜 材料科学 生物医学工程 病理
作者
Kai A. Jones,Nathan Jones,Lívia Maria Andaló Tenuta,Wendy Bloembergen,Susan E. Flannagan,Carlos González-Cabezas,Brian H. Clarkson,Li-Chi Pan,Joerg Lahann,Steven Bloembergen
出处
期刊:Caries Research [Karger Publishers]
卷期号:56 (4): 419-428 被引量:2
标识
DOI:10.1159/000527118
摘要

Previous work has shown targeted fluorescent starch nanoparticles (TFSNs) can label the subsurface of carious lesions and assist dental professionals in the diagnostic process. In this study, we aimed to evaluate the potential of using artificial intelligence (AI) to detect and score carious lesions using ICDAS in combination with fluorescent imaging following application of TFSNs on teeth with a range of lesion severities, using ICDAS-labeled images as the reference standard. A total of 130 extracted human teeth with ICDAS scores from 0 to 6 were selected by a calibrated cariologist. Then, the same surface was imaged with a stereomicroscope under white light illumination, without visible fluorescence, and blue light illumination with an orange filter following application of the TFSNs. Both sets of images were labeled by another blinded ICDAS-calibrated cariologist to demarcate lesion position and severity. Convolutional neural networks, state-of-the-art models in imaging AI, were trained to determine the presence, location, ICDAS score (severity), and lesion surface porosity (as an indicator of activity) of carious lesions, and tested by 30 k-fold validation for white light, blue light, and the combined image sets. The best models showed high performance for the detection of carious lesions (sensitivity 80.26%, PPV 76.36%), potential for determining the severity via ICDAS scoring (accuracy 72%, SD 5.67%), and the detection of surface porosity as an indicator of the activity of the lesions (accuracy 90%, SD 7.00%). More broadly, the combination of targeted biopolymer nanoparticles with imaging AI is a promising combination of novel technologies that could be applied to many other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maomaomao发布了新的文献求助10
2秒前
搞学术的小牛马完成签到 ,获得积分10
2秒前
一直发布了新的文献求助10
4秒前
小饼干完成签到,获得积分10
5秒前
6秒前
8秒前
zjd完成签到,获得积分10
9秒前
9秒前
小羊发布了新的文献求助10
9秒前
一只千反田完成签到,获得积分10
10秒前
SolderOH完成签到,获得积分10
10秒前
10秒前
小二郎应助hx采纳,获得10
11秒前
11秒前
景平发布了新的文献求助10
13秒前
核桃发布了新的文献求助10
14秒前
14秒前
许子健发布了新的文献求助10
15秒前
17秒前
19秒前
20秒前
八戒的梦想完成签到,获得积分10
20秒前
语恒完成签到,获得积分10
21秒前
lalabang发布了新的文献求助10
21秒前
21秒前
年年完成签到,获得积分10
22秒前
漂亮的秋天完成签到 ,获得积分10
22秒前
24秒前
独特的易形完成签到,获得积分10
24秒前
许子健发布了新的文献求助10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
桐桐应助科研通管家采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388