Adaptive Channel Attention-Based Deformable Generative Adversarial Network for Underwater Image Enhancement

计算机科学 频道(广播) 人工智能 卷积(计算机科学) 核(代数) 水下 计算机视觉 偏移量(计算机科学) 数学 人工神经网络 计算机网络 地理 组合数学 考古 程序设计语言
作者
Tingkai Chen,Weining Wang,Xiangjun Kong,Yanzheng Chen
标识
DOI:10.1007/978-3-031-34899-0_2
摘要

In this paper, to effectively strengthen quality of underwater image enhancement from both channel and spatial viewpoints, an adaptive channel attention-based deformable generative adversarial networks (ACADGAN) framework is established. Main contributions are as follows. 1) By virtue of multi-branch convolution architecture with dilated convolution mechanism, the adaptive channel attention (ACA) is devised, such that channel weight can be adaptively recalibrated, and thereby significantly contributing to preserving content features from channel viewpoint. 2) By augmenting offset position of sampling point with respect to convolution kernel, the deformable convolution network (DCN) is created, such that detailed information of underwater image can be dramatically retained from spatial aspect. 3) The ACADGAN scheme is eventually proposed by integrating ACA and DCN modules with a deep generative adversarial network. Comprehensive experiments demonstrate the remarkable effectiveness and superiority of the developed ACADGAN scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六个核桃完成签到,获得积分10
刚刚
64658应助沉默的半凡采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
思源应助书蠹诗魔采纳,获得10
1秒前
丘比特应助星苒采纳,获得10
1秒前
百宝完成签到,获得积分10
1秒前
Ma发布了新的文献求助10
1秒前
白沙湾发布了新的文献求助10
2秒前
852应助自然雁风采纳,获得10
2秒前
2秒前
CipherSage应助wy采纳,获得10
3秒前
Lucas应助ddb采纳,获得10
4秒前
123发布了新的文献求助10
4秒前
852应助天真思山采纳,获得10
4秒前
完美的tuzi完成签到,获得积分10
5秒前
jixiangzi完成签到,获得积分20
5秒前
6秒前
越啊完成签到,获得积分10
6秒前
czcz发布了新的文献求助10
6秒前
yuyu完成签到,获得积分10
7秒前
7秒前
吴大振发布了新的文献求助10
7秒前
小马哥发布了新的文献求助30
7秒前
幸福的蜜粉完成签到,获得积分10
8秒前
左丘万怨完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得30
9秒前
烟花应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
泡泡熊不吐泡泡完成签到 ,获得积分10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082008
求助须知:如何正确求助?哪些是违规求助? 4299523
关于积分的说明 13395840
捐赠科研通 4123323
什么是DOI,文献DOI怎么找? 2258267
邀请新用户注册赠送积分活动 1262566
关于科研通互助平台的介绍 1196568