A Survey of Integrating Federated Learning with Smart Grids: Application Prospect, Privacy Preserving and Challenges Analysis

智能电网 计算机科学 自动汇总 数据科学 人工智能 工程类 电气工程
作者
Zhichao Tang,Yan Yan,Dong Wu,Tianhao Yang,Ruixuan Dong,Shuyang Hao,Wei Wang,Yizhi Chen,Yuan Tian
出处
期刊:Communications in computer and information science 卷期号:: 296-305
标识
DOI:10.1007/978-981-99-3300-6_21
摘要

With the widespread promotion of smart grid, the power time series data collected by smart meters also increases rapidly. How to collect these data safely and effectively, analyze and utilize them, and provide better power supply service has become a hot topic of current research. The federated learning technology has attracted much attention from researchers in recent years and various federated learning-based applications have been utilized due to its characteristics of distributed, security, encryption, and reliability. In the development of smart grids, federated learning has been applied for data analytics, privacy preserving, energy management, and so on. This paper is aimed at exploring the feasibility of applying the federated learning framework to the area of smart grids. We conclude the analysis of power time series data, discussing the tribulations and solutions in the process of privacy preserving in the smart grid, and highlighting different challenges of federated learning with the smart grid. We present a summarization among federated learning-based methods with the smart grid for a variety of purposes, with the aim to draw a comparison among federated learning-based methods in the smart grid from different aspects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DVD完成签到 ,获得积分10
刚刚
1秒前
飓风卡塔琳娜完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
Lucas应助1Yer6采纳,获得10
2秒前
在水一方应助Sandy采纳,获得10
2秒前
4秒前
涛涛发布了新的文献求助10
5秒前
咕嘟咕嘟发布了新的文献求助10
6秒前
科研通AI2S应助eating采纳,获得10
6秒前
6秒前
星辰大海应助吃猫的鱼采纳,获得10
6秒前
6秒前
知秋不知秋完成签到,获得积分20
7秒前
NancyDee完成签到,获得积分10
7秒前
传奇3应助聪明钢铁侠采纳,获得10
10秒前
11秒前
ding应助搞怪慕凝采纳,获得10
12秒前
prozac完成签到,获得积分10
13秒前
14秒前
ZZ_star发布了新的文献求助10
14秒前
CipherSage应助FP采纳,获得10
14秒前
14秒前
15秒前
15秒前
w11完成签到,获得积分10
16秒前
16秒前
16秒前
MQ&FF完成签到,获得积分0
17秒前
杳鸢应助fffffff采纳,获得30
18秒前
思源应助fffffff采纳,获得10
18秒前
18秒前
18秒前
Jasper应助kk采纳,获得10
19秒前
香菜发布了新的文献求助10
19秒前
吃猫的鱼发布了新的文献求助10
19秒前
BBBB小拳头发布了新的文献求助10
19秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444043
求助须知:如何正确求助?哪些是违规求助? 3040031
关于积分的说明 8979942
捐赠科研通 2728708
什么是DOI,文献DOI怎么找? 1496621
科研通“疑难数据库(出版商)”最低求助积分说明 691791
邀请新用户注册赠送积分活动 689375