A Survey of Integrating Federated Learning with Smart Grids: Application Prospect, Privacy Preserving and Challenges Analysis

智能电网 计算机科学 自动汇总 数据科学 人工智能 工程类 电气工程
作者
Zhichao Tang,Yan Yan,Dong Wu,Tianhao Yang,Ruixuan Dong,Shuyang Hao,Wei Wang,Yizhi Chen,Yuan Tian
出处
期刊:Communications in computer and information science 卷期号:: 296-305
标识
DOI:10.1007/978-981-99-3300-6_21
摘要

With the widespread promotion of smart grid, the power time series data collected by smart meters also increases rapidly. How to collect these data safely and effectively, analyze and utilize them, and provide better power supply service has become a hot topic of current research. The federated learning technology has attracted much attention from researchers in recent years and various federated learning-based applications have been utilized due to its characteristics of distributed, security, encryption, and reliability. In the development of smart grids, federated learning has been applied for data analytics, privacy preserving, energy management, and so on. This paper is aimed at exploring the feasibility of applying the federated learning framework to the area of smart grids. We conclude the analysis of power time series data, discussing the tribulations and solutions in the process of privacy preserving in the smart grid, and highlighting different challenges of federated learning with the smart grid. We present a summarization among federated learning-based methods with the smart grid for a variety of purposes, with the aim to draw a comparison among federated learning-based methods in the smart grid from different aspects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLLLL发布了新的文献求助10
刚刚
YHYHYH完成签到,获得积分10
刚刚
jun完成签到,获得积分10
1秒前
淡定的安白完成签到,获得积分10
2秒前
3秒前
邓可新完成签到,获得积分10
3秒前
空城完成签到,获得积分10
3秒前
4秒前
研友_5Z4ZA5完成签到,获得积分10
5秒前
6秒前
小二郎应助zhongjr_hz采纳,获得10
6秒前
浮光完成签到,获得积分10
6秒前
Titi完成签到 ,获得积分10
7秒前
caop完成签到,获得积分10
8秒前
8秒前
Lvy完成签到,获得积分10
8秒前
xliiii完成签到,获得积分10
8秒前
英仙座发布了新的文献求助20
9秒前
机智的孤兰完成签到 ,获得积分10
9秒前
9秒前
LLLLL完成签到,获得积分10
9秒前
hobowei完成签到 ,获得积分10
9秒前
mdbbs2021完成签到,获得积分10
11秒前
WTTTTTFFFFFF发布了新的文献求助10
11秒前
唔呜無完成签到 ,获得积分10
11秒前
jiajia发布了新的文献求助10
12秒前
易燃物品完成签到,获得积分10
12秒前
Hina完成签到,获得积分10
12秒前
123完成签到,获得积分10
12秒前
li完成签到,获得积分10
13秒前
123完成签到,获得积分10
13秒前
贱小贱完成签到,获得积分10
13秒前
鱼儿完成签到,获得积分10
14秒前
asdfqwer应助luwenxuan采纳,获得10
15秒前
ttc完成签到,获得积分10
16秒前
英仙座完成签到,获得积分10
17秒前
鹿叽叽完成签到,获得积分10
17秒前
humaning完成签到,获得积分10
17秒前
agnway发布了新的文献求助10
17秒前
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027