A Survey of Integrating Federated Learning with Smart Grids: Application Prospect, Privacy Preserving and Challenges Analysis

智能电网 计算机科学 自动汇总 数据科学 人工智能 工程类 电气工程
作者
Zhichao Tang,Yan Yan,Dong Wu,Tianhao Yang,Ruixuan Dong,Shuyang Hao,Wei Wang,Yizhi Chen,Yuan Tian
出处
期刊:Communications in computer and information science 卷期号:: 296-305
标识
DOI:10.1007/978-981-99-3300-6_21
摘要

With the widespread promotion of smart grid, the power time series data collected by smart meters also increases rapidly. How to collect these data safely and effectively, analyze and utilize them, and provide better power supply service has become a hot topic of current research. The federated learning technology has attracted much attention from researchers in recent years and various federated learning-based applications have been utilized due to its characteristics of distributed, security, encryption, and reliability. In the development of smart grids, federated learning has been applied for data analytics, privacy preserving, energy management, and so on. This paper is aimed at exploring the feasibility of applying the federated learning framework to the area of smart grids. We conclude the analysis of power time series data, discussing the tribulations and solutions in the process of privacy preserving in the smart grid, and highlighting different challenges of federated learning with the smart grid. We present a summarization among federated learning-based methods with the smart grid for a variety of purposes, with the aim to draw a comparison among federated learning-based methods in the smart grid from different aspects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joseph0209发布了新的文献求助10
刚刚
刚刚
淡然冬灵发布了新的文献求助10
2秒前
jie发布了新的文献求助10
2秒前
果果完成签到,获得积分10
2秒前
齐天大帝发布了新的文献求助10
3秒前
3秒前
勤耕苦读完成签到,获得积分10
4秒前
科研通AI5应助陶醉的迎海采纳,获得10
4秒前
丫丫发布了新的文献求助10
4秒前
5秒前
tian发布了新的文献求助10
5秒前
白金璐发布了新的文献求助10
5秒前
5秒前
orixero应助Joseph0209采纳,获得10
6秒前
xd完成签到,获得积分20
7秒前
7秒前
王二发布了新的文献求助10
8秒前
顾矜应助ruby采纳,获得10
8秒前
布曲发布了新的文献求助10
9秒前
10秒前
李李发布了新的文献求助10
12秒前
13秒前
brodie完成签到,获得积分10
13秒前
完美梨愁完成签到 ,获得积分10
13秒前
77完成签到,获得积分10
13秒前
14秒前
Cactus应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
14秒前
彭于彦祖应助科研通管家采纳,获得20
15秒前
所所应助科研通管家采纳,获得10
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
多情蓝发布了新的文献求助10
15秒前
Cactus应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423