A Survey of Integrating Federated Learning with Smart Grids: Application Prospect, Privacy Preserving and Challenges Analysis

智能电网 计算机科学 自动汇总 数据科学 人工智能 工程类 电气工程
作者
Zhichao Tang,Yan Yan,Dong Wu,Tianhao Yang,Ruixuan Dong,Shuyang Hao,Wei Wang,Yizhi Chen,Yuan Tian
出处
期刊:Communications in computer and information science 卷期号:: 296-305
标识
DOI:10.1007/978-981-99-3300-6_21
摘要

With the widespread promotion of smart grid, the power time series data collected by smart meters also increases rapidly. How to collect these data safely and effectively, analyze and utilize them, and provide better power supply service has become a hot topic of current research. The federated learning technology has attracted much attention from researchers in recent years and various federated learning-based applications have been utilized due to its characteristics of distributed, security, encryption, and reliability. In the development of smart grids, federated learning has been applied for data analytics, privacy preserving, energy management, and so on. This paper is aimed at exploring the feasibility of applying the federated learning framework to the area of smart grids. We conclude the analysis of power time series data, discussing the tribulations and solutions in the process of privacy preserving in the smart grid, and highlighting different challenges of federated learning with the smart grid. We present a summarization among federated learning-based methods with the smart grid for a variety of purposes, with the aim to draw a comparison among federated learning-based methods in the smart grid from different aspects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TEY完成签到 ,获得积分10
刚刚
包容的跳跳糖完成签到 ,获得积分20
1秒前
坚强的寒风完成签到,获得积分10
1秒前
魔幻若血完成签到,获得积分10
2秒前
2秒前
3秒前
PN_Allen完成签到,获得积分10
3秒前
ztt1221完成签到,获得积分10
3秒前
厄尔尼诺完成签到,获得积分10
4秒前
imcwj完成签到 ,获得积分10
4秒前
潇洒莞完成签到 ,获得积分10
4秒前
qianmo完成签到,获得积分10
4秒前
zhangwb完成签到,获得积分10
5秒前
size_t完成签到,获得积分10
5秒前
aaa完成签到,获得积分10
5秒前
Agoni完成签到,获得积分10
5秒前
Daryl完成签到,获得积分10
5秒前
Yurrrrt完成签到,获得积分10
6秒前
Ting完成签到 ,获得积分10
6秒前
scl123发布了新的文献求助10
7秒前
interest-li发布了新的文献求助10
8秒前
悠夏sunny完成签到,获得积分10
9秒前
小马甲应助千殇采纳,获得10
9秒前
你长得很下饭所以完成签到,获得积分10
9秒前
Orange应助蒋蒋蒋采纳,获得10
10秒前
充电宝应助华仔采纳,获得10
11秒前
kingwhitewing完成签到,获得积分10
11秒前
jphu完成签到,获得积分10
11秒前
吕万鹏完成签到,获得积分10
11秒前
勤劳冰烟完成签到,获得积分10
12秒前
JING完成签到,获得积分10
12秒前
啥时候能退休完成签到,获得积分10
12秒前
Nathan完成签到,获得积分10
13秒前
英俊的铭应助浮生采纳,获得10
13秒前
13秒前
13秒前
博修发布了新的文献求助10
14秒前
wzn完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912