A Survey of Integrating Federated Learning with Smart Grids: Application Prospect, Privacy Preserving and Challenges Analysis

智能电网 计算机科学 自动汇总 数据科学 人工智能 工程类 电气工程
作者
Zhichao Tang,Yan Yan,Dong Wu,Tianhao Yang,Ruixuan Dong,Shuyang Hao,Wei Wang,Yizhi Chen,Yuan Tian
出处
期刊:Communications in computer and information science 卷期号:: 296-305
标识
DOI:10.1007/978-981-99-3300-6_21
摘要

With the widespread promotion of smart grid, the power time series data collected by smart meters also increases rapidly. How to collect these data safely and effectively, analyze and utilize them, and provide better power supply service has become a hot topic of current research. The federated learning technology has attracted much attention from researchers in recent years and various federated learning-based applications have been utilized due to its characteristics of distributed, security, encryption, and reliability. In the development of smart grids, federated learning has been applied for data analytics, privacy preserving, energy management, and so on. This paper is aimed at exploring the feasibility of applying the federated learning framework to the area of smart grids. We conclude the analysis of power time series data, discussing the tribulations and solutions in the process of privacy preserving in the smart grid, and highlighting different challenges of federated learning with the smart grid. We present a summarization among federated learning-based methods with the smart grid for a variety of purposes, with the aim to draw a comparison among federated learning-based methods in the smart grid from different aspects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刺1656完成签到,获得积分10
刚刚
刚刚
所所应助优秀真采纳,获得10
刚刚
迟迟发布了新的文献求助10
刚刚
NexusExplorer应助Azheng采纳,获得10
1秒前
sxpab发布了新的文献求助10
1秒前
凌发发布了新的文献求助10
1秒前
1秒前
就这发布了新的文献求助10
1秒前
lee完成签到,获得积分10
2秒前
2秒前
zbs发布了新的文献求助10
2秒前
2秒前
852应助北越城主采纳,获得30
2秒前
小不遛w完成签到,获得积分10
3秒前
organicboy完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
xinyu完成签到,获得积分10
4秒前
干嘛完成签到 ,获得积分20
5秒前
超越一切完成签到,获得积分10
5秒前
5秒前
5秒前
无花果应助东北采纳,获得10
5秒前
6秒前
巴旦木发布了新的文献求助10
6秒前
静仰星空完成签到,获得积分10
7秒前
7秒前
田様应助小景毕业采纳,获得10
7秒前
浮游应助科研通管家采纳,获得30
7秒前
wxnice发布了新的文献求助10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
优美紫槐应助科研通管家采纳,获得10
7秒前
lxp完成签到,获得积分10
7秒前
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
liyuqi61148完成签到,获得积分10
7秒前
浮游应助科研通管家采纳,获得10
8秒前
LiLiuli应助HAMS采纳,获得10
8秒前
赘婿应助呦呦采纳,获得10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297