Green space exposure on depression and anxiety outcomes: A meta-analysis

焦虑 荟萃分析 优势比 心理健康 萧条(经济学) 置信区间 归一化差异植被指数 观察研究 医学 环境卫生 精神科 内科学 生态学 气候变化 生物 宏观经济学 经济
作者
Ziquan Liu,Xuemei Chen,Huanhuan Cui,Yuxuan Ma,Ning Gao,Xinyu Li,Xiangyan Meng,Huishu Lin,Halidan Abudou,Li Guo,Qisijing Liu
出处
期刊:Environmental Research [Elsevier BV]
卷期号:231: 116303-116303 被引量:42
标识
DOI:10.1016/j.envres.2023.116303
摘要

The development of urbanization has led to emerging mental health issues. Green space was becoming increasingly important for mental health. Previous studies have demonstrated the value of green space for a variety of outcomes connected to mental health. However, uncertainty remains regarding the association between green spaces and the risk of depression and anxiety outcomes. This study aimed to integrate present evidence from observational studies to define the association of exposure to green space with depression and anxiety.A thorough electronic search of PubMed, Web of Science and Embase database was performed. We transformed the odds ratio (OR) of different green increments into per 0.1 unit increase in normalized difference vegetation index (NDVI) and per 10% increase in percentage of green space. Cochrane's Q and I2 statistics were used to assess study heterogeneity, and random-effects models were employed to calculate combined effect estimation OR with 95% confidence intervals (CIs). Pooled analysis was completed using Stata 15.0.According to this meta-analysis, a 10% increase in the proportion of green space was linked to a lower risk of depression (merged OR (95% CI) = 0.963 (0.948, 0.979)) and anxiety (merged OR (95% CI) = 0.938 (0.858, 1.025)) and a 0.1 unit increase in NDVI was linked to a lower risk of depression (merged OR (95% CI) = 0.931 (0.887, 0.977)).Results of this meta-analysis supported improving green space exposure in preventing depression and anxiety. Higher green space exposure might be helpful for depression and anxiety disorders. Therefore, improving or preserving green space should be regarded as a promising intervention for public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助何东玲采纳,获得10
1秒前
粉色娇嫩发布了新的文献求助10
1秒前
魔法翼龙完成签到,获得积分10
1秒前
2秒前
LYX完成签到,获得积分10
3秒前
3秒前
3秒前
思源应助天天文献我爱看采纳,获得20
3秒前
3秒前
尘远知山静完成签到 ,获得积分10
4秒前
刘墨乔完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
大海123发布了新的文献求助10
5秒前
钢铁侠发布了新的文献求助10
6秒前
Pumpkin完成签到,获得积分10
6秒前
Miaochen发布了新的文献求助10
6秒前
7秒前
坤坤发布了新的文献求助10
7秒前
xcx发布了新的文献求助10
7秒前
8秒前
9秒前
张小馨完成签到 ,获得积分10
9秒前
不可思议发布了新的文献求助10
10秒前
走起关注了科研通微信公众号
10秒前
10秒前
嘻xi完成签到 ,获得积分10
10秒前
害羞仙人掌完成签到,获得积分10
10秒前
爆米花应助克林采纳,获得30
11秒前
bkagyin应助jjjn采纳,获得10
11秒前
Akim应助精明的绿凝采纳,获得10
12秒前
钢铁侠完成签到,获得积分10
13秒前
标致夜蕾发布了新的文献求助10
13秒前
13秒前
菜菜完成签到,获得积分10
14秒前
14秒前
田様应助张月采纳,获得10
14秒前
FashionBoy应助嘻嘻采纳,获得10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Aircraft Engine Design, Third Edition 308
戦後少女マンガ史 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155889
求助须知:如何正确求助?哪些是违规求助? 4351488
关于积分的说明 13549100
捐赠科研通 4194416
什么是DOI,文献DOI怎么找? 2300527
邀请新用户注册赠送积分活动 1300474
关于科研通互助平台的介绍 1245484