亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable machine-learning for predicting power conversion efficiency of non-halogenated green solvent-processed organic solar cells based on Hansen solubility parameters and molecular weights of polymers

有机太阳能电池 溶剂 聚合物太阳能电池 材料科学 聚合物 工艺工程 溶解度 计算机科学 人工智能 机器学习 纳米技术 生化工程 化学 有机化学 工程类 复合材料
作者
Min‐Hsuan Lee
出处
期刊:Solar Energy [Elsevier]
卷期号:261: 7-13 被引量:4
标识
DOI:10.1016/j.solener.2023.05.050
摘要

The green-solvent-processable strategies (e.g., open-air-printable ink for environmentally-friendly fabrication) are crucial to enable sustainable manufacturing of large-scale devices with safety considerations (e.g., uncomplicated handling, low hazard potential, and high availability) to the commercialization of Bulk heterojunction (BHJ) based organic solar cells (OSCs). Unfortunately, identifying the relationship between the performances of non-halogenated green solvent-processed BHJ-based OSCs and arbitrary polymer-solvent pairs has been a challenging problem for the profound sustainable development of the OSCs field because of the lack of reliable quantitative and accurate prediction methods. To address this problem, we show that the Gradient Boosting (GB) machine-learning model, trained on several types of potentially relevant descriptors (e.g., polymer molecular weight (MW) and Hansen solubility parameters (δd, δp, δh)), can be used to predict power conversion efficiency (PCE) of non-halogenated green solvent-processed OSCs, thereby providing a novel data-driven paradigm to select appropriate polymer-solvent pairs. The feature importance analysis, generated by the SHAP method, reveals that polymer MW has a profound impact on the prediction of PCE of non-halogenated green solvent-processed BHJ-based OSCs. The GB machine-learning model constructed here is capable of extracting the highly non-linear polymer/non-halogenated green solvent pairs-performance mapping of BHJ-based OSCs, and the SHAP feature importance analysis can be easily applied to strengthening the relationship between the complex machine-learning models and the scientists in the experimental device optimization of non-halogenated green solvent-processed BHJ-based OSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
本微尘发布了新的文献求助10
4秒前
5秒前
9秒前
9秒前
隐形曼青应助快乐匕采纳,获得10
11秒前
Kashing发布了新的文献求助10
11秒前
14秒前
花痴的骁完成签到 ,获得积分10
14秒前
20秒前
21秒前
田様应助火星上的如松采纳,获得10
24秒前
快乐匕发布了新的文献求助10
26秒前
天真的皓轩完成签到,获得积分10
26秒前
搜集达人应助nn采纳,获得10
27秒前
28秒前
28秒前
思源应助谨慎的咖啡豆采纳,获得10
32秒前
FashionBoy应助谨慎的咖啡豆采纳,获得10
32秒前
orixero应助谨慎的咖啡豆采纳,获得10
32秒前
orixero应助谨慎的咖啡豆采纳,获得10
32秒前
科目三应助谨慎的咖啡豆采纳,获得10
32秒前
SciGPT应助谨慎的咖啡豆采纳,获得10
32秒前
CipherSage应助谨慎的咖啡豆采纳,获得10
32秒前
32秒前
32秒前
毛豆应助谨慎的咖啡豆采纳,获得10
32秒前
Akim应助谨慎的咖啡豆采纳,获得10
32秒前
33秒前
34秒前
35秒前
打打应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
大模型应助科研通管家采纳,获得10
37秒前
foster完成签到 ,获得积分10
40秒前
winfree完成签到 ,获得积分10
45秒前
缓慢山柳完成签到,获得积分10
45秒前
46秒前
深情安青应助zhijiu采纳,获得10
48秒前
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022880
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502747
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387