矩阵分裂
可逆矩阵
数学
系数矩阵
基质(化学分析)
趋同(经济学)
收敛矩阵
无矩阵法
应用数学
迭代法
预处理程序
线性系统
对称矩阵
稀疏矩阵
数学优化
算法
状态转移矩阵
数学分析
纯数学
特征向量
物理
量子力学
复合材料
经济
高斯分布
材料科学
经济增长
摘要
Abstract For solving large sparse systems of linear equations, we construct a paradigm of two‐step matrix splitting iteration methods and analyze its convergence property for the nonsingular and the positive‐definite matrix class. This two‐step matrix splitting iteration paradigm adopts only one single splitting of the coefficient matrix, together with several arbitrary iteration parameters. Hence, it can be constructed easily in actual applications, and can also recover a number of representatives of the existing two‐step matrix splitting iteration methods. This result provides systematic treatment for the two‐step matrix splitting iteration methods, establishes rigorous theory for their asymptotic convergence, and enriches algorithmic family of the linear iteration solvers, for the iterative solutions of large sparse linear systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI