Electron transport in graphene nanoribbons with line defects

凝聚态物理 材料科学 石墨烯纳米带 带隙 费米能级 石墨烯 费米能量 电导 电子 物理 纳米技术 量子力学
作者
Jin-Ting Ding,Pei-Jia Hu,Aimin Guo
出处
期刊:Chinese Physics [Science Press]
卷期号:72 (15): 157301-157301 被引量:3
标识
DOI:10.7498/aps.72.20230502
摘要

Bandgap engineering in graphene has been a hot topic in condensed matter physics. Although several line defects have been experimentally reported in graphene, the relationship between the bandgap engineering and the line defects has not yet been discussed. In this work, by combining the Green’s function method with the Landauer-Büttiker formula, we study theoretically the electron transport along disordered ZGNRs through taking into account three types of line defects which arise from random distribution of 4-8 rings. Our results show that although there exist electronic states around the Fermi energy of the disordered ZGNRs with randomly distributed line defects, all these electronic states are localized and a transmission gap appears around the Fermi energy. This localization phenomenon originates from the structural disorder induced by the randomly distributed line defects. To demonstrate the robustness of transmission gaps, we further calculate the conductance values of disordered ZGNR with different insertion probabilities and widths, finding that the size of transmission gap strongly depends upon the types of disorder, disorder degree, and width. When the disorder degree of line defects is low or the width of the nanoribbon is narrow, there is a notable difference in the size of the transmission gaps among the three types of disordered ZGNRs. As the width or disorder degree increases, the transmission gap size tends to be consistent. Like armchair ZGNRs, the transmission gap size decreases with the increase of width or disorder of ZGNR. Nonetheless, the openings of the transmission gaps in three types of disordered ZGNRs remain robust, regardless of variations in degree of disorder or width. These results are helpful in designing line-defect based nanodevices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
满意爆米花完成签到,获得积分10
刚刚
小许的大米14完成签到,获得积分10
刚刚
1秒前
zfh1341完成签到,获得积分10
1秒前
2秒前
清辉月凝发布了新的文献求助10
3秒前
柔情公蚂蚁完成签到,获得积分10
3秒前
liuHX完成签到,获得积分10
3秒前
魔幻安筠发布了新的文献求助10
3秒前
balabala完成签到,获得积分10
4秒前
Hello应助土豆味的马铃薯采纳,获得10
4秒前
漂亮幻莲完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助150
4秒前
NexusExplorer应助辛勤采柳采纳,获得10
5秒前
施世宏发布了新的文献求助10
5秒前
qqqq发布了新的文献求助10
5秒前
善学以致用应助粱夏烟采纳,获得10
5秒前
科研通AI6应助纯真的曼荷采纳,获得10
6秒前
小小发布了新的文献求助10
7秒前
okra完成签到,获得积分10
7秒前
漂亮幻莲发布了新的文献求助10
7秒前
7秒前
隐形曼青应助zyf采纳,获得10
9秒前
今后应助甜瓜采纳,获得10
10秒前
pain豆先生完成签到 ,获得积分10
10秒前
科研通AI6应助sugar采纳,获得100
10秒前
研友_LX77q8完成签到,获得积分10
10秒前
11秒前
11秒前
大力丹琴完成签到,获得积分10
12秒前
12秒前
小马甲应助liu采纳,获得10
13秒前
13秒前
1234完成签到 ,获得积分10
13秒前
菲尼克斯完成签到,获得积分10
14秒前
清辉月凝完成签到,获得积分20
14秒前
nczpf2010完成签到,获得积分10
14秒前
xm完成签到,获得积分10
15秒前
燕子发布了新的文献求助10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5152744
求助须知:如何正确求助?哪些是违规求助? 4348447
关于积分的说明 13539462
捐赠科研通 4190930
什么是DOI,文献DOI怎么找? 2298449
邀请新用户注册赠送积分活动 1298620
关于科研通互助平台的介绍 1243464