Electron transport in graphene nanoribbons with line defects

凝聚态物理 材料科学 石墨烯纳米带 带隙 费米能级 石墨烯 费米能量 电导 电子 物理 纳米技术 量子力学
作者
Jin-Ting Ding,Pei-Jia Hu,Aimin Guo
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:72 (15): 157301-157301 被引量:3
标识
DOI:10.7498/aps.72.20230502
摘要

Bandgap engineering in graphene has been a hot topic in condensed matter physics. Although several line defects have been experimentally reported in graphene, the relationship between the bandgap engineering and the line defects has not yet been discussed. In this work, by combining the Green’s function method with the Landauer-Büttiker formula, we study theoretically the electron transport along disordered ZGNRs through taking into account three types of line defects which arise from random distribution of 4-8 rings. Our results show that although there exist electronic states around the Fermi energy of the disordered ZGNRs with randomly distributed line defects, all these electronic states are localized and a transmission gap appears around the Fermi energy. This localization phenomenon originates from the structural disorder induced by the randomly distributed line defects. To demonstrate the robustness of transmission gaps, we further calculate the conductance values of disordered ZGNR with different insertion probabilities and widths, finding that the size of transmission gap strongly depends upon the types of disorder, disorder degree, and width. When the disorder degree of line defects is low or the width of the nanoribbon is narrow, there is a notable difference in the size of the transmission gaps among the three types of disordered ZGNRs. As the width or disorder degree increases, the transmission gap size tends to be consistent. Like armchair ZGNRs, the transmission gap size decreases with the increase of width or disorder of ZGNR. Nonetheless, the openings of the transmission gaps in three types of disordered ZGNRs remain robust, regardless of variations in degree of disorder or width. These results are helpful in designing line-defect based nanodevices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ww发布了新的文献求助30
1秒前
小鲁发布了新的文献求助10
1秒前
脑洞疼应助Fjun采纳,获得10
1秒前
1秒前
1秒前
抱朴守真完成签到 ,获得积分10
1秒前
开心的若烟完成签到,获得积分10
2秒前
学术乞丐发布了新的文献求助10
2秒前
zz发布了新的文献求助10
3秒前
3秒前
lvyi发布了新的文献求助10
3秒前
科研通AI6应助max采纳,获得10
3秒前
4秒前
Gusta完成签到,获得积分10
4秒前
李富贵完成签到,获得积分10
4秒前
SciGPT应助含羞草采纳,获得10
4秒前
汉堡包应助终归采纳,获得10
5秒前
敬之发布了新的文献求助10
5秒前
5秒前
科研狗发布了新的文献求助10
5秒前
欣喜的砖头完成签到,获得积分10
6秒前
香蕉诗蕊应助12GAO采纳,获得10
7秒前
达夫斯基完成签到,获得积分10
7秒前
7秒前
上官若男应助zilhua采纳,获得10
8秒前
olivia发布了新的文献求助10
8秒前
CodeCraft应助ww采纳,获得10
9秒前
乐乐应助xldongcn采纳,获得10
9秒前
抱朴守真关注了科研通微信公众号
9秒前
半胖完成签到,获得积分10
9秒前
9秒前
Echo发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
窝不想写论文完成签到 ,获得积分10
12秒前
12秒前
Siriluck发布了新的文献求助10
13秒前
13秒前
13秒前
xiaotian完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642013
求助须知:如何正确求助?哪些是违规求助? 4757923
关于积分的说明 15015955
捐赠科研通 4800475
什么是DOI,文献DOI怎么找? 2566095
邀请新用户注册赠送积分活动 1524208
关于科研通互助平台的介绍 1483840