Multiscale strain alleviation of Ni-rich cathode guided by in situ environmental transmission electron microscopy during the solid-state synthesis

阴极 材料科学 透射电子显微镜 晶界 氧化物 电化学 纳米技术 化学工程 电极 复合材料 冶金 化学 微观结构 物理化学 工程类
作者
Fengyu Zhang,Yunna Guo,Chenxi Li,Tiening Tan,Xuedong Zhang,Jun Zhao,Ping Qiu,Hongbing Zhang,Zhaoyu Rong,Dingding Zhu,Lei Deng,Zhangran Ye,Zhixuan Yu,Peng Jia,Xiang Liu,Jianyu Huang,Liqiang Zhang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:84: 467-475 被引量:7
标识
DOI:10.1016/j.jechem.2023.05.027
摘要

Ni-rich layered oxides are one of the most promising cathode materials for Li-ion batteries due to their high energy density. However, the chemomechanical breakdown and capacity degradation associated with the anisotropic lattice evolution during lithiation/delithiation hinders its practical application. Herein, by utilizing the in situ environmental transmission electron microscopy (ETEM), we provide a real time nanoscale characterization of high temperature solid-state synthesis of LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode, and unprecedentedly reveal the strain/stress formation and morphological evolution mechanism of primary/secondary particles, as well as their influence on electrochemical performance. We show that stress inhomogeneity during solid-state synthesis will lead to both primary/secondary particle pulverization and new grain boundary initiation, which are detrimental to cathode cycling stability and rate performance. Aiming to alleviate this multiscale strain during solid-state synthesis, we introduced a calcination scheme that effectively relieves the stress during the synthesis, thus mitigating the primary/secondary particle crack and the detrimental grain boundaries formation, which in turn improves the cathode structural integrity and Li-ion transport kinetics for long-life and high-rate electrochemical performance. This work remarkably advances the fundamental understanding on mechanochemical properties of transition metal oxide cathode with solid-state synthesis and provides a unified guide for optimization the Ni-rich oxide cathode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
WSGQT完成签到 ,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
小美美发布了新的文献求助10
4秒前
乐乐应助水论文行者采纳,获得10
4秒前
冰凌花开完成签到,获得积分10
4秒前
烟花应助文艺的听白采纳,获得10
5秒前
大模型应助wxq采纳,获得10
5秒前
5秒前
善学以致用应助ning采纳,获得10
6秒前
gg关闭了gg文献求助
6秒前
7秒前
lan完成签到,获得积分10
7秒前
8秒前
9秒前
科研通AI5应助小牛牛采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
美丽的韩小姐完成签到,获得积分10
10秒前
dandanpang完成签到 ,获得积分10
11秒前
mmyhn发布了新的文献求助10
11秒前
Jasper应助小美美采纳,获得10
12秒前
姜夔发布了新的文献求助10
12秒前
12秒前
桐桐应助喔喔佳佳采纳,获得10
13秒前
言非离发布了新的文献求助350
14秒前
14秒前
15秒前
科研通AI5应助重要聪展采纳,获得30
16秒前
16秒前
年轻迪奥发布了新的文献求助10
16秒前
17秒前
sajdhjas发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662735
求助须知:如何正确求助?哪些是违规求助? 3223515
关于积分的说明 9752041
捐赠科研通 2933470
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771