Container drayage problem integrated with truck appointment system and separation mode

卡车 容器(类型理论) 分离(统计) 模式(计算机接口) 运输工程 工程类 计算机科学 汽车工程 数学 统计 机械工程 操作系统
作者
Ying Huang,Zhihong Jin,P. Liu,Wenting Wang,D Zhang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:193: 110307-110307
标识
DOI:10.1016/j.cie.2024.110307
摘要

Growing demand for seaborne trade has exacerbated the challenges faced by drayage operators in inland container transportation. In some cases, drayage operators must make truck scheduling decisions and book periods for trucks to visit terminals daily. This paper considers the appointment system and separation mode in container drayage problem, which consists of delivery and pickup transportation tasks for empty and full containers. A mixed-integer linear programming model is developed to minimize the total truck operating time while solving the truck scheduling problem, the empty container allocation problem, and the appointment problem. Another key feature of the model is considering the temporal constraints between tasks from a more realistic perspective. Due to the complexity of the problem, it is not practical to obtain exact solutions for large instances. Therefore, we complete the implementation of a new genetic algorithm (GA) that introduces a topological sort tailored to this problem. Several experiments and analyses are used to demonstrate the correctness of the proposed model as well as the efficiency of the algorithm. The findings indicate that, when compared to traditional mode, separation mode can reduce total truck operating time by an average of 29.4%. The total truck operating time difference between the two modes shows an overall positive trend if the task size increases. In addition, a rational setting of the appointment system will have a beneficial effect on truck scheduling. The decision on the selection of periods and the increment of each quota is crucial in optimizing the setting of the appointment system to reduce the total truck operating time for the mutual benefit of both terminals and drayage operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大晨发布了新的文献求助10
刚刚
赖道之发布了新的文献求助10
1秒前
1秒前
1111发布了新的文献求助10
1秒前
坤坤发布了新的文献求助10
1秒前
酷波er应助包容的剑采纳,获得10
1秒前
2秒前
2秒前
genoy完成签到,获得积分10
2秒前
乔乔完成签到,获得积分10
2秒前
吾问无为谓完成签到,获得积分20
4秒前
4秒前
4秒前
花椒泡茶完成签到,获得积分10
4秒前
4秒前
小马哥完成签到,获得积分20
4秒前
4秒前
5秒前
mkW完成签到,获得积分10
5秒前
读研好难完成签到,获得积分10
5秒前
跳跃的罡发布了新的文献求助10
5秒前
论文侠完成签到 ,获得积分10
5秒前
神勇的雅香应助梓榆采纳,获得10
5秒前
5秒前
深情安青应助Mlwwq采纳,获得10
5秒前
脑洞疼应助耿强采纳,获得10
6秒前
江梦松完成签到,获得积分10
6秒前
6秒前
6秒前
liu发布了新的文献求助10
7秒前
8秒前
8秒前
水獭发布了新的文献求助10
9秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
9秒前
9秒前
LZZ发布了新的文献求助10
9秒前
昵称发布了新的文献求助10
10秒前
认真的一刀发布了新的文献求助200
10秒前
Lin发布了新的文献求助10
10秒前
杨燕华完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762