Graph-Regularized Non-Negative Matrix Factorization for Single-Cell Clustering in scRNA-Seq Data

符号 聚类分析 图形 计算机科学 非负矩阵分解 组合数学 数学 人工智能 矩阵分解 特征向量 算术 物理 量子力学
作者
Han-Jing Jiang,Mei-Neng Wang,Yu‐An Huang,Yabing Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4986-4994
标识
DOI:10.1109/jbhi.2024.3400050
摘要

The advent of single-cell RNA sequencing (scRNA-seq) has brought forth fresh perspectives on intricate biological processes, revealing the nuances and divergences present among distinct cells. Accurate single-cell analysis is a crucial prerequisite for in-depth investigation into the underlying mechanisms of heterogeneity. Due to various technical noises, like the impact of dropout values, scRNA-seq data remains challenging to interpret. In this work, we propose an unsupervised learning framework for scRNA-seq data analysis (aka Sc-GNNMF). Based on the non-negativity and sparsity of scRNA-seq data, we propose employing graph-regularized non-negative matrix factorization (GNNMF) algorithm for the analysis of scRNA-seq data, which involves estimating cell-cell sparse similarity and gene-gene sparse similarity through Laplacian kernels and p-nearest neighbor graphs ( p-NNG). By assuming intrinsic geometric local invariance, we use a weighted p-nearest known neighbors ( p-NKN) to optimize the scRNA-seq data. The optimized scRNA-seq data then participates in the matrix decomposition process, promoting the closeness of cells with similar types in cell-gene data space and determining a more suitable embedding space for clustering. Sc-GNNMF demonstrates superior performance compared to other methods and maintains satisfactory compatibility and robustness, as evidenced by experiments on 11 real scRNA-seq datasets. Furthermore, Sc-GNNMF yields excellent results in clustering tasks, extracting useful gene markers, and pseudo-temporal analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果萧发布了新的文献求助10
刚刚
钟是一梦发布了新的文献求助10
1秒前
Lucas应助Light采纳,获得10
2秒前
2秒前
2秒前
李健的粉丝团团长应助Ll采纳,获得10
2秒前
2秒前
JQKing完成签到,获得积分10
3秒前
3秒前
zs完成签到 ,获得积分10
3秒前
3秒前
11完成签到,获得积分20
3秒前
一定会更好的完成签到,获得积分10
4秒前
Pangsj发布了新的文献求助10
4秒前
姆姆完成签到,获得积分10
4秒前
领导范儿应助落晨采纳,获得10
4秒前
5秒前
善良的安卉完成签到,获得积分10
5秒前
淡定吃吃发布了新的文献求助10
6秒前
yyf关闭了yyf文献求助
6秒前
7秒前
kokodayour完成签到,获得积分10
7秒前
Quin完成签到,获得积分10
7秒前
7秒前
冷艳乐松完成签到,获得积分10
8秒前
8秒前
8秒前
诸葛雪兰完成签到,获得积分10
9秒前
洛尚完成签到,获得积分10
9秒前
czq完成签到,获得积分10
9秒前
VVhahaha完成签到,获得积分10
10秒前
limof发布了新的文献求助10
10秒前
11秒前
小葡萄完成签到 ,获得积分10
11秒前
12秒前
wu发布了新的文献求助30
12秒前
13秒前
毕业就好发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740