Efficient Antagonistic k-plex Enumeration in Signed Graphs

枚举 组合数学 数学 有符号图 离散数学 计算机科学 图形
作者
Lantian Xu,Rong-Hua Li,Wen Dong,Qiangqiang Dai,Guoren Wang,Lu Qin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.16268
摘要

A signed graph is a graph where each edge receives a sign, positive or negative. The signed graph model has been used in many real applications, such as protein complex discovery and social network analysis. Finding cohesive subgraphs in signed graphs is a fundamental problem. A k-plex is a common model for cohesive subgraphs in which every vertex is adjacent to all but at most k vertices within the subgraph. In this paper, we propose the model of size-constrained antagonistic k-plex in a signed graph. The proposed model guarantees that the resulting subgraph is a k-plex and can be divided into two sub-k-plexes, both of which have positive inner edges and negative outer edges. This paper aims to identify all maximal antagonistic k-plexes in a signed graph. Through rigorous analysis, we show that the problem is NP-Hardness. We propose a novel framework for maximal antagonistic k-plexes utilizing set enumeration. Efficiency is improved through pivot pruning and early termination based on the color bound. Preprocessing techniques based on degree and dichromatic graphs effectively narrow the search space before enumeration. Extensive experiments on real-world datasets demonstrate our algorithm's efficiency, effectiveness, and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助8秒记忆的鱼儿采纳,获得10
刚刚
魏伯安完成签到,获得积分10
1秒前
4秒前
Newt应助小火车采纳,获得10
6秒前
7秒前
feige发布了新的文献求助10
7秒前
11秒前
12秒前
英姑应助慧子采纳,获得10
14秒前
14秒前
欧阳正义发布了新的文献求助10
15秒前
16秒前
啦啦啦123完成签到,获得积分10
16秒前
log发布了新的文献求助10
17秒前
18秒前
Miss-Li发布了新的文献求助20
18秒前
汉堡包应助zhan采纳,获得20
18秒前
18秒前
我是老大应助feige采纳,获得10
18秒前
万能图书馆应助黑冰A采纳,获得10
19秒前
Shueason完成签到 ,获得积分10
20秒前
zz发布了新的文献求助20
24秒前
syqlyd完成签到 ,获得积分10
26秒前
思源应助黄晓旭采纳,获得10
27秒前
梨花酒完成签到,获得积分10
27秒前
sun发布了新的文献求助10
28秒前
29秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
Hello应助科研通管家采纳,获得10
29秒前
Liufgui应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
Liufgui应助科研通管家采纳,获得10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
OKOK应助科研通管家采纳,获得20
29秒前
英姑应助科研通管家采纳,获得10
29秒前
Liufgui应助科研通管家采纳,获得10
29秒前
30秒前
大模型应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498