已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Experimental design considerations and statistical analyses in preclinical tumor growth inhibition studies

范畴变量 样本量测定 计算机科学 临床研究设计 临床终点 事件(粒子物理) 临床试验 医学物理学 数据挖掘 医学 统计 机器学习 数学 病理 量子力学 物理
作者
Vinícius Bonato,Szu‐Yu Tang,Matilda Hsieh,Y Zhang,Shibing Deng
出处
期刊:Pharmaceutical Statistics [Wiley]
被引量:1
标识
DOI:10.1002/pst.2399
摘要

Abstract Animal models are used in cancer pre‐clinical research to identify drug targets, select compound candidates for clinical trials, determine optimal drug dosages, identify biomarkers, and ensure compound safety. This tutorial aims to provide an overview of study design and data analysis from animal studies, focusing on tumor growth inhibition (TGI) studies used for prioritization of anticancer compounds. Some of the experimental design aspects discussed here include the selection of the appropriate biological models, the choice of endpoints to be used for the assessment of anticancer activity (tumor volumes, tumor growth rates, events, or categorical endpoints), considerations on measurement errors and potential biases related to this type of study, sample size estimation, and discussions on missing data handling. The tutorial also reviews the statistical analyses employed in TGI studies, considering both continuous endpoints collected at single time‐point and continuous endpoints collected longitudinally over multiple time‐points. Additionally, time‐to‐event analysis is discussed for studies focusing on event occurrences such as animal deaths or tumor size reaching a certain threshold. Furthermore, for TGI studies involving categorical endpoints, statistical methodology is outlined to compare outcomes among treatment groups effectively. Lastly, this tutorial also discusses analysis for assessing drug combination synergy in TGI studies, which involves combining treatments to enhance overall treatment efficacy. The tutorial also includes R sample scripts to help users to perform relevant data analysis of this topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
艾斯比发布了新的文献求助10
1秒前
jia完成签到 ,获得积分10
2秒前
爆米花应助黎嘉怡采纳,获得10
3秒前
3秒前
4秒前
0000完成签到 ,获得积分10
5秒前
zhovy完成签到,获得积分10
8秒前
9秒前
整齐的翠梅完成签到 ,获得积分10
9秒前
Gloriauuu完成签到,获得积分20
9秒前
老实醉冬发布了新的文献求助10
9秒前
星辰大海应助乔沃维奇采纳,获得10
10秒前
Ddd发布了新的文献求助40
10秒前
田様应助Chemberry采纳,获得10
12秒前
大模型应助说书人采纳,获得10
12秒前
13秒前
陈锦鲤完成签到 ,获得积分10
14秒前
武鑫跃发布了新的文献求助20
14秒前
15秒前
漂亮恶天完成签到 ,获得积分10
15秒前
15秒前
斯文败类应助姚驰采纳,获得10
15秒前
Lyncon完成签到,获得积分10
15秒前
Meng发布了新的文献求助10
17秒前
小昕思完成签到 ,获得积分10
17秒前
肥牛完成签到,获得积分10
18秒前
专注的芷完成签到 ,获得积分10
19秒前
杨一一完成签到 ,获得积分10
19秒前
Gloriauuu发布了新的文献求助10
20秒前
浮游应助蓝色天空采纳,获得10
22秒前
22秒前
我是老大应助jjjdj采纳,获得10
23秒前
25秒前
史萌发布了新的文献求助10
25秒前
黎嘉怡发布了新的文献求助10
27秒前
27秒前
今后应助mmyhn采纳,获得10
28秒前
万能图书馆应助龙井茶采纳,获得10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356070
求助须知:如何正确求助?哪些是违规求助? 4487906
关于积分的说明 13971244
捐赠科研通 4388674
什么是DOI,文献DOI怎么找? 2411197
邀请新用户注册赠送积分活动 1403730
关于科研通互助平台的介绍 1377447