Experimental design considerations and statistical analyses in preclinical tumor growth inhibition studies

范畴变量 样本量测定 计算机科学 临床研究设计 临床终点 事件(粒子物理) 临床试验 医学物理学 数据挖掘 医学 统计 机器学习 数学 病理 物理 量子力学
作者
Vinícius Bonato,Szu‐Yu Tang,Matilda Hsieh,Y Zhang,Shibing Deng
出处
期刊:Pharmaceutical Statistics [Wiley]
被引量:1
标识
DOI:10.1002/pst.2399
摘要

Abstract Animal models are used in cancer pre‐clinical research to identify drug targets, select compound candidates for clinical trials, determine optimal drug dosages, identify biomarkers, and ensure compound safety. This tutorial aims to provide an overview of study design and data analysis from animal studies, focusing on tumor growth inhibition (TGI) studies used for prioritization of anticancer compounds. Some of the experimental design aspects discussed here include the selection of the appropriate biological models, the choice of endpoints to be used for the assessment of anticancer activity (tumor volumes, tumor growth rates, events, or categorical endpoints), considerations on measurement errors and potential biases related to this type of study, sample size estimation, and discussions on missing data handling. The tutorial also reviews the statistical analyses employed in TGI studies, considering both continuous endpoints collected at single time‐point and continuous endpoints collected longitudinally over multiple time‐points. Additionally, time‐to‐event analysis is discussed for studies focusing on event occurrences such as animal deaths or tumor size reaching a certain threshold. Furthermore, for TGI studies involving categorical endpoints, statistical methodology is outlined to compare outcomes among treatment groups effectively. Lastly, this tutorial also discusses analysis for assessing drug combination synergy in TGI studies, which involves combining treatments to enhance overall treatment efficacy. The tutorial also includes R sample scripts to help users to perform relevant data analysis of this topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AN发布了新的文献求助10
刚刚
田様应助ff采纳,获得10
刚刚
tah发布了新的文献求助10
刚刚
xiamu发布了新的文献求助10
刚刚
杨怡红发布了新的文献求助10
2秒前
LovelyYy发布了新的文献求助10
2秒前
研友_5Z46A5完成签到,获得积分10
2秒前
2秒前
orixero应助海蓝博采纳,获得10
2秒前
漫漫发布了新的文献求助10
3秒前
DD完成签到,获得积分20
3秒前
bellaluna完成签到,获得积分10
3秒前
3秒前
4秒前
大气的氧发布了新的文献求助10
4秒前
4秒前
djh完成签到,获得积分0
4秒前
英姑应助Lazyneko采纳,获得10
4秒前
苗条的善斓完成签到,获得积分10
4秒前
贪玩的跳跳糖完成签到,获得积分10
4秒前
爱撒娇的妙竹完成签到,获得积分10
6秒前
guanoo完成签到,获得积分10
6秒前
求是完成签到,获得积分20
6秒前
gyhmm完成签到,获得积分10
6秒前
刘勇完成签到,获得积分10
7秒前
7秒前
宝藏发布了新的文献求助10
7秒前
7秒前
落泺完成签到 ,获得积分10
7秒前
YBHTLLLL完成签到,获得积分10
8秒前
大个应助AN采纳,获得10
8秒前
槑槑发布了新的文献求助10
8秒前
8秒前
英俊的铭应助fairy采纳,获得30
8秒前
8秒前
zzrg发布了新的文献求助10
8秒前
Continue完成签到,获得积分10
8秒前
白踏歌发布了新的文献求助10
9秒前
殷晓阳发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848