亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Experimental design considerations and statistical analyses in preclinical tumor growth inhibition studies

范畴变量 样本量测定 计算机科学 临床研究设计 临床终点 事件(粒子物理) 临床试验 医学物理学 数据挖掘 医学 统计 机器学习 数学 病理 量子力学 物理
作者
Vinícius Bonato,Szu‐Yu Tang,Matilda Hsieh,Y Zhang,Shibing Deng
出处
期刊:Pharmaceutical Statistics [Wiley]
标识
DOI:10.1002/pst.2399
摘要

Abstract Animal models are used in cancer pre‐clinical research to identify drug targets, select compound candidates for clinical trials, determine optimal drug dosages, identify biomarkers, and ensure compound safety. This tutorial aims to provide an overview of study design and data analysis from animal studies, focusing on tumor growth inhibition (TGI) studies used for prioritization of anticancer compounds. Some of the experimental design aspects discussed here include the selection of the appropriate biological models, the choice of endpoints to be used for the assessment of anticancer activity (tumor volumes, tumor growth rates, events, or categorical endpoints), considerations on measurement errors and potential biases related to this type of study, sample size estimation, and discussions on missing data handling. The tutorial also reviews the statistical analyses employed in TGI studies, considering both continuous endpoints collected at single time‐point and continuous endpoints collected longitudinally over multiple time‐points. Additionally, time‐to‐event analysis is discussed for studies focusing on event occurrences such as animal deaths or tumor size reaching a certain threshold. Furthermore, for TGI studies involving categorical endpoints, statistical methodology is outlined to compare outcomes among treatment groups effectively. Lastly, this tutorial also discusses analysis for assessing drug combination synergy in TGI studies, which involves combining treatments to enhance overall treatment efficacy. The tutorial also includes R sample scripts to help users to perform relevant data analysis of this topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情的橙汁完成签到,获得积分10
12秒前
20秒前
30秒前
量子星尘发布了新的文献求助10
45秒前
49秒前
55秒前
菠萝完成签到,获得积分10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
小蘑菇应助菠萝采纳,获得10
1分钟前
1分钟前
头孢西丁发布了新的文献求助10
1分钟前
KachiRyoji应助容若采纳,获得10
2分钟前
2分钟前
Sunnpy完成签到 ,获得积分10
2分钟前
斯文败类应助容若采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
苏震坤发布了新的文献求助10
3分钟前
3分钟前
KachiRyoji应助容若采纳,获得10
3分钟前
3分钟前
3分钟前
jinyue发布了新的文献求助10
3分钟前
谵妄姿态发布了新的文献求助30
3分钟前
传奇3应助超级灰狼采纳,获得10
4分钟前
4分钟前
谵妄姿态完成签到,获得积分10
4分钟前
超级灰狼发布了新的文献求助10
4分钟前
科研通AI5应助wzhtnl采纳,获得10
4分钟前
后陡门爱神完成签到 ,获得积分10
4分钟前
科研通AI6应助容若采纳,获得10
4分钟前
4分钟前
Perry完成签到,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI6应助容若采纳,获得10
5分钟前
5分钟前
我刷的烧饼贼亮完成签到 ,获得积分10
5分钟前
obedVL完成签到,获得积分10
5分钟前
丁笑天完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611441
求助须知:如何正确求助?哪些是违规求助? 4016962
关于积分的说明 12435927
捐赠科研通 3698837
什么是DOI,文献DOI怎么找? 2039748
邀请新用户注册赠送积分活动 1072548
科研通“疑难数据库(出版商)”最低求助积分说明 956235