Experimental design considerations and statistical analyses in preclinical tumor growth inhibition studies

范畴变量 样本量测定 计算机科学 临床研究设计 临床终点 事件(粒子物理) 临床试验 医学物理学 数据挖掘 医学 统计 机器学习 数学 病理 物理 量子力学
作者
Vinícius Bonato,Szu‐Yu Tang,Matilda Hsieh,Y Zhang,Shibing Deng
出处
期刊:Pharmaceutical Statistics [Wiley]
标识
DOI:10.1002/pst.2399
摘要

Abstract Animal models are used in cancer pre‐clinical research to identify drug targets, select compound candidates for clinical trials, determine optimal drug dosages, identify biomarkers, and ensure compound safety. This tutorial aims to provide an overview of study design and data analysis from animal studies, focusing on tumor growth inhibition (TGI) studies used for prioritization of anticancer compounds. Some of the experimental design aspects discussed here include the selection of the appropriate biological models, the choice of endpoints to be used for the assessment of anticancer activity (tumor volumes, tumor growth rates, events, or categorical endpoints), considerations on measurement errors and potential biases related to this type of study, sample size estimation, and discussions on missing data handling. The tutorial also reviews the statistical analyses employed in TGI studies, considering both continuous endpoints collected at single time‐point and continuous endpoints collected longitudinally over multiple time‐points. Additionally, time‐to‐event analysis is discussed for studies focusing on event occurrences such as animal deaths or tumor size reaching a certain threshold. Furthermore, for TGI studies involving categorical endpoints, statistical methodology is outlined to compare outcomes among treatment groups effectively. Lastly, this tutorial also discusses analysis for assessing drug combination synergy in TGI studies, which involves combining treatments to enhance overall treatment efficacy. The tutorial also includes R sample scripts to help users to perform relevant data analysis of this topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助yhc采纳,获得10
1秒前
雨幕完成签到,获得积分10
2秒前
果子狸发布了新的文献求助30
2秒前
6秒前
李嘉发布了新的文献求助20
6秒前
华仔应助无妨采纳,获得10
6秒前
科研土人发布了新的文献求助10
7秒前
9秒前
10秒前
10秒前
耍酷含芙发布了新的文献求助10
11秒前
在水一方应助XT666采纳,获得10
12秒前
chenLei完成签到,获得积分10
14秒前
Jonsnow发布了新的文献求助10
15秒前
zxw发布了新的文献求助10
15秒前
15秒前
16秒前
CL完成签到,获得积分10
17秒前
17秒前
拼搏向上完成签到,获得积分10
17秒前
科研通AI5应助王十三采纳,获得10
17秒前
li完成签到,获得积分10
17秒前
112233发布了新的文献求助10
17秒前
19秒前
20秒前
yhc发布了新的文献求助10
20秒前
Y1234关注了科研通微信公众号
20秒前
gying应助筱姐姐采纳,获得10
20秒前
NexusExplorer应助livialiu采纳,获得10
21秒前
21秒前
21秒前
科研通AI5应助旭日采纳,获得10
22秒前
李嘉完成签到,获得积分10
22秒前
23秒前
积极囧发布了新的文献求助10
23秒前
24秒前
!!应助ardejiang采纳,获得10
24秒前
kingwill应助星空物语采纳,获得20
26秒前
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476997
求助须知:如何正确求助?哪些是违规求助? 3068528
关于积分的说明 9108331
捐赠科研通 2759950
什么是DOI,文献DOI怎么找? 1514505
邀请新用户注册赠送积分活动 700266
科研通“疑难数据库(出版商)”最低求助积分说明 699422