Vibration behavior prediction of submerged nanobeams with axially traveling supports: numerical, analytical, and machine learning approaches

轴对称性 振动 机械 计算机科学 结构工程 材料科学 工程类 物理 声学
作者
Xiaolan Chen
出处
期刊:Mechanics Based Design of Structures and Machines [Taylor & Francis]
卷期号:52 (12): 10273-10303 被引量:1
标识
DOI:10.1080/15397734.2024.2354530
摘要

This work surveyed the vibration behavior and stability analysis of an underwater moving flexible nanosize beam, implementing numerical and analytical methods as well as tree-based machine learning (ML) algorithms. Dynamic modeling is performed based on the nonlocal stress-strain gradient theory (NSSGT), incorporating variable environmental conditions, surface energy, and rotational inertia effects. The natural frequencies and instability threshold are computed numerically. The exact closed-form mathematical expression for the critical towing velocity of the nanosize beam is determined analytically. Also, decision tree regression and least-squares boosting tree (LSBT) regression algorithms are exploited to predict stability boundaries and the fundamental vibration frequency, and their efficiency is surveyed accordingly. Comparative studies and parametric investigations are conducted. The impressions of geometry, added mass coefficient, scale ratio parameter, surface layer characteristics, fluid mass ratio, humidity, temperature rise, and external magnetic field intensity on the nanosystem dynamics are examined and illuminated. It is detected that the results of the analytical method and ML-based approaches are consistent with those reported by the numerical technique and literature. The results asserted that the proposed ML algorithms have acceptable performance and excellent effectiveness in computational time and cost. It is comprehended that the dynamic features of submerged traveling nanobeams drastically depend on the rotational inertia effects and thickness-dependent scale effects. The stability of the immersed movable nanoscale beams is perceived to improve by increasing the scale ratio parameter and the added mass coefficient. From the perspective of the optimal design of engineering instrumentation tools, the outcomes of the current article can be applied as an inclusive benchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情夏槐发布了新的文献求助10
1秒前
chenchen发布了新的文献求助10
1秒前
1秒前
惜名发布了新的文献求助10
2秒前
落晖完成签到 ,获得积分10
3秒前
动漫大师发布了新的文献求助10
3秒前
乐乐应助xmhxpz采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
中大王发布了新的文献求助10
5秒前
大模型应助顺利的金晶采纳,获得10
7秒前
冷酷哥爱学习完成签到,获得积分20
8秒前
如意的尔蝶完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
幽壑之潜蛟完成签到,获得积分0
9秒前
9秒前
思源应助生动路人采纳,获得10
9秒前
10秒前
11秒前
abc123完成签到,获得积分10
12秒前
13秒前
惜名发布了新的文献求助20
14秒前
科研通AI5应助自由的西牛采纳,获得10
14秒前
量子星尘发布了新的文献求助10
16秒前
Jerry完成签到,获得积分10
16秒前
是榤啊发布了新的文献求助10
17秒前
17秒前
科研通AI5应助淡然的大碗采纳,获得10
17秒前
CipherSage应助怕孤独的傲柏采纳,获得10
17秒前
17秒前
poyo发布了新的文献求助10
17秒前
20秒前
灵巧代柔完成签到,获得积分10
20秒前
李健应助正直的西牛采纳,获得10
21秒前
21秒前
21秒前
keyan完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
xin完成签到 ,获得积分10
24秒前
zzy发布了新的文献求助10
24秒前
Orange应助喜悦香萱采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659929
求助须知:如何正确求助?哪些是违规求助? 3221325
关于积分的说明 9739851
捐赠科研通 2930724
什么是DOI,文献DOI怎么找? 1604598
邀请新用户注册赠送积分活动 757316
科研通“疑难数据库(出版商)”最低求助积分说明 734376