LEAP: LLM instruction-example adaptive prompting framework for biomedical relation extraction

计算机科学 稳健性(进化) 任务(项目管理) 关系(数据库) 关系抽取 人工智能 机器学习 数据挖掘 工程类 系统工程 化学 生物化学 基因
作者
Huixue Zhou,Mingchen Li,Yongkang Xiao,Han Yang,Rui Zhang
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (9): 2010-2018 被引量:8
标识
DOI:10.1093/jamia/ocae147
摘要

Abstract Objective To investigate the demonstration in large language models (LLMs) for biomedical relation extraction. This study introduces a framework comprising three types of adaptive tuning methods to assess their impacts and effectiveness. Materials and Methods Our study was conducted in two phases. Initially, we analyzed a range of demonstration components vital for LLMs’ biomedical data capabilities, including task descriptions and examples, experimenting with various combinations. Subsequently, we introduced the LLM instruction-example adaptive prompting (LEAP) framework, including instruction adaptive tuning, example adaptive tuning, and instruction-example adaptive tuning methods. This framework aims to systematically investigate both adaptive task descriptions and adaptive examples within the demonstration. We assessed the performance of the LEAP framework on the DDI, ChemProt, and BioRED datasets, employing LLMs such as Llama2-7b, Llama2-13b, and MedLLaMA_13B. Results Our findings indicated that Instruction + Options + Example and its expanded form substantially improved F1 scores over the standard Instruction + Options mode for zero-shot LLMs. The LEAP framework, particularly through its example adaptive prompting, demonstrated superior performance over conventional instruction tuning across all models. Notably, the MedLLAMA_13B model achieved an exceptional F1 score of 95.13 on the ChemProt dataset using this method. Significant improvements were also observed in the DDI 2013 and BioRED datasets, confirming the method’s robustness in sophisticated data extraction scenarios. Conclusion The LEAP framework offers a compelling strategy for enhancing LLM training strategies, steering away from extensive fine-tuning towards more dynamic and contextually enriched prompting methodologies, showcasing in biomedical relation extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥虾米完成签到,获得积分10
刚刚
zzz完成签到,获得积分10
刚刚
义气代梅发布了新的文献求助10
刚刚
1秒前
西瓜鹿发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
yyuu完成签到,获得积分10
2秒前
xyl完成签到,获得积分10
2秒前
2秒前
芋泥泥泥发布了新的文献求助10
2秒前
对对碰完成签到,获得积分10
3秒前
ZQC完成签到,获得积分10
3秒前
英姑应助科研吗喽采纳,获得10
3秒前
Ava应助天真的迎天采纳,获得10
4秒前
温柔沛容完成签到 ,获得积分10
4秒前
4秒前
4秒前
萝卜发布了新的文献求助10
5秒前
科研通AI2S应助小娄娄娄采纳,获得10
5秒前
yzkkzy完成签到,获得积分10
5秒前
知许解夏应助章鱼哥采纳,获得10
6秒前
负责凛完成签到,获得积分10
6秒前
奶昔源发布了新的文献求助10
7秒前
xyl发布了新的文献求助10
7秒前
酷波er应助兰兰采纳,获得10
7秒前
彩色觅荷发布了新的文献求助10
7秒前
huenan完成签到,获得积分10
8秒前
daisies应助淡淡的苑睐采纳,获得20
8秒前
系统提示完成签到,获得积分10
9秒前
田一完成签到,获得积分10
9秒前
9秒前
沃利坎完成签到,获得积分10
10秒前
Troyelm举报求助违规成功
10秒前
寒江雪举报求助违规成功
10秒前
kingwill举报求助违规成功
10秒前
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255