A Real-Time Hand Gesture Recognition System for Low-Latency HMI via Transient HD-sEMG and In-Sensor Computing

手势识别 计算机科学 延迟(音频) 手势 低延迟(资本市场) 瞬态(计算机编程) 计算机视觉 人工智能 实时计算 语音识别 计算机网络 电信 操作系统
作者
Hongchu Qiu,Zhitao Chen,Yan Chen,Yang Chaojie,Sihan Wu,Fanglin Li,Longhan Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3417236
摘要

In real-time human-machine interaction (HMI) applications, hand gesture recognition (HGR) requires high accuracy with low latency. Surface electromyography (sEMG), a physiological electrical signal reflecting muscle activation, is extensively used in HMI. Recently, transient sEMG, generated during the gesture transitions, has been employed in HGR to achieve lower observational latency compared to steady-state sEMG. However, the use of long feature windows (up to 200 ms) still make it less desirable in low-latency HMI. In addition, most studies have relied on remote computing, where remote data processing and large data transfer result in high computation and network latency. In this paper, we proposed a method leveraging transient high density sEMG (HD-sEMG) and in-sensor computing to achieve low-latency HGR. An sEMG contrastive convolution network (sCCN) was proposed for HGR. The mean absolute value and its average integration were used to train the sCCN in a contrastive learning manner. In addition, all signal acquisition, data processing, and pattern recognition processes were deployed within designed sensor for in-sensor computing. Compared to the state-of-the-art study using multi-channel 200-ms transient sEMG, our proposed method achieved a comparable HGR accuracy of 0.963, and a 58% lower observational latency of only 84 ms. In-sensor computing realizes a 4 times lower computation latency of 3 ms, and significantly reduces the network latency to 2 ms. The proposed method offers a promising approach to achieving low-latency HGR without compromising accuracy. This facilitates real-time HMI in biomedical applications such as prostheses, exoskeletons, virtual reality, and video games.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寸愿发布了新的文献求助10
刚刚
keyanzhang完成签到 ,获得积分0
刚刚
琦琦国王完成签到,获得积分10
2秒前
淡定静白完成签到,获得积分10
6秒前
Jun应助浅浅采纳,获得10
7秒前
等待巧曼完成签到,获得积分10
8秒前
8秒前
小马甲应助zai采纳,获得10
8秒前
乐观的非笑完成签到,获得积分10
9秒前
危机的雪巧完成签到,获得积分10
9秒前
9秒前
lucky完成签到,获得积分10
10秒前
小h发布了新的文献求助10
10秒前
知栀完成签到,获得积分10
11秒前
JONY完成签到 ,获得积分10
11秒前
13秒前
自觉石头完成签到 ,获得积分10
14秒前
万里完成签到,获得积分10
14秒前
娇气的金鱼完成签到,获得积分10
16秒前
MXX发布了新的文献求助10
16秒前
zsyzxb完成签到,获得积分10
17秒前
You发布了新的文献求助10
17秒前
王闪闪完成签到,获得积分10
18秒前
刻苦羽毛完成签到 ,获得积分10
18秒前
研友_Ze0vBn完成签到,获得积分10
19秒前
20秒前
周七七完成签到,获得积分10
20秒前
可靠的老鼠完成签到,获得积分10
21秒前
细腻的寻真完成签到,获得积分10
23秒前
24秒前
酷酷的笔记本完成签到,获得积分10
24秒前
spy完成签到,获得积分10
25秒前
xx完成签到,获得积分10
27秒前
28秒前
28秒前
高兴断秋完成签到,获得积分10
30秒前
坚果完成签到 ,获得积分10
30秒前
V_I_G完成签到,获得积分10
30秒前
zai发布了新的文献求助10
31秒前
传奇3应助Z160采纳,获得10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175