A Real-Time Hand Gesture Recognition System for Low-Latency HMI via Transient HD-SEMG and In-Sensor Computing

手势识别 计算机科学 计算 延迟(音频) 手势 人工智能 实时计算 嵌入式系统 电信 算法
作者
Haomeng Qiu,Zhitao Chen,Yan Chen,Yang Chaojie,Sihan Wu,Fanglin Li,Longhan Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5156-5167 被引量:1
标识
DOI:10.1109/jbhi.2024.3417236
摘要

In real-time human-machine interaction (HMI) applications, hand gesture recognition (HGR) requires high accuracy with low latency. Surface electromyography (sEMG), a physiological electrical signal reflecting muscle activation, is extensively used in HMI. Recently, transient sEMG, generated during the gesture transitions, has been employed in HGR to achieve lower observational latency compared to steady-state sEMG. However, the use of long feature windows (up to 200 ms) still make it less desirable in low-latency HMI. In addition, most studies have relied on remote computing, where remote data processing and large data transfer result in high computation and network latency. In this paper, we proposed a method leveraging transient high density sEMG (HD-sEMG) and in-sensor computing to achieve low-latency HGR. An sEMG contrastive convolution network (sCCN) was proposed for HGR. The mean absolute value and its average integration were used to train the sCCN in a contrastive learning manner. In addition, all signal acquisition, data processing, and pattern recognition processes were deployed within designed sensor for in-sensor computing. Compared to the state-of-the-art study using multi-channel 200-ms transient sEMG, our proposed method achieved a comparable HGR accuracy of 0.963, and a 58% lower observational latency of only 84 ms. In-sensor computing realizes a 4 times lower computation latency of 3 ms, and significantly reduces the network latency to 2 ms. The proposed method offers a promising approach to achieving low-latency HGR without compromising accuracy. This facilitates real-time HMI in biomedical applications such as prostheses, exoskeletons, virtual reality, and video games.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cynthia发布了新的文献求助10
1秒前
Fliu发布了新的文献求助10
1秒前
bkagyin应助宝宝巴士驾驶员采纳,获得10
1秒前
1秒前
1秒前
科研通AI5应助尊敬谷波采纳,获得10
1秒前
852应助典雅的俊驰采纳,获得10
2秒前
2秒前
2秒前
我是老大应助友好的储采纳,获得10
2秒前
jack发布了新的文献求助10
3秒前
研友_VZG7GZ应助xiaowei采纳,获得10
3秒前
天天快乐应助孤独的访旋采纳,获得10
4秒前
wyy发布了新的文献求助10
4秒前
whatever应助guozizi采纳,获得50
4秒前
5秒前
5秒前
Pyrene发布了新的文献求助10
6秒前
我爱看文献完成签到,获得积分10
6秒前
无辜的听安完成签到,获得积分10
6秒前
Xiao完成签到,获得积分10
7秒前
7秒前
脑洞疼应助芋泥脑袋采纳,获得10
7秒前
wanci应助wyy采纳,获得10
7秒前
小二郎应助调皮的凝丹采纳,获得10
7秒前
沙发发完成签到,获得积分20
8秒前
PINK完成签到,获得积分10
8秒前
8秒前
斯可发布了新的文献求助10
8秒前
sil发布了新的文献求助10
9秒前
EMM完成签到 ,获得积分10
9秒前
zyj完成签到,获得积分10
9秒前
迷人的林林完成签到 ,获得积分10
9秒前
10秒前
10秒前
咚咚完成签到,获得积分10
10秒前
桐桐应助你找谁哇采纳,获得10
10秒前
vv完成签到 ,获得积分10
10秒前
浮游应助影魔采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105