已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Real-Time Hand Gesture Recognition System for Low-Latency HMI via Transient HD-SEMG and In-Sensor Computing

手势识别 计算机科学 计算 延迟(音频) 手势 人工智能 实时计算 嵌入式系统 电信 算法
作者
Haomeng Qiu,Zhitao Chen,Yan Chen,Yang Chaojie,Sihan Wu,Fanglin Li,Longhan Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5156-5167 被引量:1
标识
DOI:10.1109/jbhi.2024.3417236
摘要

In real-time human-machine interaction (HMI) applications, hand gesture recognition (HGR) requires high accuracy with low latency. Surface electromyography (sEMG), a physiological electrical signal reflecting muscle activation, is extensively used in HMI. Recently, transient sEMG, generated during the gesture transitions, has been employed in HGR to achieve lower observational latency compared to steady-state sEMG. However, the use of long feature windows (up to 200 ms) still make it less desirable in low-latency HMI. In addition, most studies have relied on remote computing, where remote data processing and large data transfer result in high computation and network latency. In this paper, we proposed a method leveraging transient high density sEMG (HD-sEMG) and in-sensor computing to achieve low-latency HGR. An sEMG contrastive convolution network (sCCN) was proposed for HGR. The mean absolute value and its average integration were used to train the sCCN in a contrastive learning manner. In addition, all signal acquisition, data processing, and pattern recognition processes were deployed within designed sensor for in-sensor computing. Compared to the state-of-the-art study using multi-channel 200-ms transient sEMG, our proposed method achieved a comparable HGR accuracy of 0.963, and a 58% lower observational latency of only 84 ms. In-sensor computing realizes a 4 times lower computation latency of 3 ms, and significantly reduces the network latency to 2 ms. The proposed method offers a promising approach to achieving low-latency HGR without compromising accuracy. This facilitates real-time HMI in biomedical applications such as prostheses, exoskeletons, virtual reality, and video games.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao完成签到 ,获得积分10
刚刚
荷兰香猪完成签到,获得积分10
刚刚
Dobby完成签到,获得积分10
刚刚
刚刚
hanjiake完成签到,获得积分20
刚刚
凶狠的寄风完成签到 ,获得积分10
1秒前
Jing完成签到,获得积分10
1秒前
王w完成签到 ,获得积分10
2秒前
无情的匪发布了新的文献求助10
3秒前
等等完成签到 ,获得积分10
3秒前
hamburger完成签到 ,获得积分10
3秒前
春日奶黄包完成签到 ,获得积分10
3秒前
木子弓长完成签到,获得积分10
3秒前
遇上就这样吧完成签到,获得积分0
4秒前
yxm完成签到 ,获得积分10
4秒前
Nick完成签到 ,获得积分10
4秒前
klio完成签到 ,获得积分10
5秒前
唠叨的源智完成签到,获得积分0
5秒前
欣欣每天开开心心完成签到 ,获得积分10
5秒前
英勇兔子完成签到 ,获得积分10
6秒前
Niuniu发布了新的文献求助10
6秒前
zzzq完成签到 ,获得积分10
6秒前
冰凝完成签到,获得积分10
6秒前
檀檀完成签到,获得积分10
6秒前
天真的不凡完成签到 ,获得积分10
7秒前
yuqinghui98完成签到 ,获得积分10
7秒前
兴奋的若菱完成签到 ,获得积分10
7秒前
Orange应助木子弓长采纳,获得10
7秒前
是三石啊完成签到 ,获得积分10
8秒前
Ukiss完成签到 ,获得积分10
9秒前
开心的野狼完成签到 ,获得积分10
9秒前
4652376完成签到 ,获得积分10
9秒前
小小富应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
Hello应助科研通管家采纳,获得10
11秒前
qsq完成签到 ,获得积分10
11秒前
清逸完成签到 ,获得积分10
11秒前
ANIVIA完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968138
求助须知:如何正确求助?哪些是违规求助? 3513109
关于积分的说明 11166577
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629

今日热心研友

小小富
10
眼睛大的新晴
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10