A Real-Time Hand Gesture Recognition System for Low-Latency HMI via Transient HD-SEMG and In-Sensor Computing

手势识别 计算机科学 计算 延迟(音频) 手势 人工智能 实时计算 嵌入式系统 电信 算法
作者
Haomeng Qiu,Zhitao Chen,Yan Chen,Yang Chaojie,Sihan Wu,Fanglin Li,Longhan Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5156-5167 被引量:1
标识
DOI:10.1109/jbhi.2024.3417236
摘要

In real-time human-machine interaction (HMI) applications, hand gesture recognition (HGR) requires high accuracy with low latency. Surface electromyography (sEMG), a physiological electrical signal reflecting muscle activation, is extensively used in HMI. Recently, transient sEMG, generated during the gesture transitions, has been employed in HGR to achieve lower observational latency compared to steady-state sEMG. However, the use of long feature windows (up to 200 ms) still make it less desirable in low-latency HMI. In addition, most studies have relied on remote computing, where remote data processing and large data transfer result in high computation and network latency. In this paper, we proposed a method leveraging transient high density sEMG (HD-sEMG) and in-sensor computing to achieve low-latency HGR. An sEMG contrastive convolution network (sCCN) was proposed for HGR. The mean absolute value and its average integration were used to train the sCCN in a contrastive learning manner. In addition, all signal acquisition, data processing, and pattern recognition processes were deployed within designed sensor for in-sensor computing. Compared to the state-of-the-art study using multi-channel 200-ms transient sEMG, our proposed method achieved a comparable HGR accuracy of 0.963, and a 58% lower observational latency of only 84 ms. In-sensor computing realizes a 4 times lower computation latency of 3 ms, and significantly reduces the network latency to 2 ms. The proposed method offers a promising approach to achieving low-latency HGR without compromising accuracy. This facilitates real-time HMI in biomedical applications such as prostheses, exoskeletons, virtual reality, and video games.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助小田睡不醒采纳,获得10
刚刚
刚刚
香蕉觅云应助荒野风采纳,获得10
刚刚
1秒前
1秒前
阳光发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
孔踏歌完成签到,获得积分10
3秒前
3秒前
Tingting完成签到 ,获得积分10
3秒前
4秒前
希望天下0贩的0应助久违采纳,获得10
4秒前
一一发布了新的文献求助10
4秒前
小怪兽kk完成签到,获得积分20
6秒前
高玉峰发布了新的文献求助10
6秒前
蒹葭发布了新的文献求助10
6秒前
御风发布了新的文献求助10
7秒前
饼子完成签到 ,获得积分10
7秒前
好好好发布了新的文献求助10
7秒前
7秒前
路人发布了新的文献求助30
7秒前
7秒前
科目三应助顾建瑜采纳,获得10
7秒前
个性的曼卉关注了科研通微信公众号
8秒前
东东发布了新的文献求助10
8秒前
9秒前
汉堡包发布了新的文献求助10
10秒前
Orange应助LIULIYUAN采纳,获得30
10秒前
11秒前
彭于晏应助gong采纳,获得10
11秒前
kity发布了新的文献求助10
11秒前
科研通AI6应助万古采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
wanci应助大宁采纳,获得10
13秒前
田様应助asdf采纳,获得10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781