Advanced Multi-Dimensional Feature Fusion Attention Module

计算机科学 特征(语言学) 频道(广播) 帕斯卡(单位) 块(置换群论) 模式识别(心理学) 数据挖掘 计算 可视化 人工智能 理论计算机科学 算法 计算机网络 数学 几何学 哲学 语言学 程序设计语言
作者
Yi Shi,Zhe Li
标识
DOI:10.1145/3645259.3645273
摘要

Recent study has emphasized the importance of establish multi-dimensional information dependencies between weight vectors and input feature maps, in the process of calculating attention. However, although existing networks establish the connection from different perspectives, the connection presented is relatively limited, and the network's differentiation between important and non-important information is insufficiency, which inevitably leads to effective information loss. This article studies an efficient channel attention mechanism that can fuse multi-dimensional feature information, implement the interaction of channel and spatial position feature from both independent channels and global cross channels dimensions, and able to expand important information while suppress unimportant information. We propose the SW-SE block, which assigns the spatial position information of the cross channel to the process of calculating channel attention, strengthens information exchange between multiple channels, establishes closer connections, and obtains channel weight vectors with better expressiveness while greatly enhancing feature sampling ability. We have conducted ablation experiments on various mainstream network structures, and have achieved fine results in multiple aspects, e.g., classification, object detection and visualization. We reached 3.12% and 1.41% top-1 accuracy growth based on Resnet 50/100 on CIFAR10/100 respectively, and 4.01% on light weight network, along with 8.57% increased on for object detection on PASCAL VOC2007/2012, with only a small number of parameters and computation time increased.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助平淡扬采纳,获得30
1秒前
1秒前
斯文败类应助zero采纳,获得10
3秒前
4秒前
4秒前
FashionBoy应助王滕采纳,获得20
4秒前
平淡扬完成签到,获得积分10
5秒前
Orange应助张好好采纳,获得10
6秒前
6秒前
SgZyKn发布了新的文献求助10
7秒前
不安青牛应助科研通管家采纳,获得10
7秒前
穆紫应助科研通管家采纳,获得10
7秒前
Wfy应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
毛豆应助GUGU采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得30
8秒前
科研通AI2S应助GUGU采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
谦让语兰发布了新的文献求助10
9秒前
10秒前
思源应助jwb711采纳,获得10
10秒前
Lucky小M发布了新的文献求助10
10秒前
洞若观烟火完成签到,获得积分20
11秒前
11秒前
脑洞疼应助苹果追命采纳,获得50
11秒前
股份回购发布了新的文献求助10
12秒前
斑ban发布了新的文献求助30
12秒前
songvv发布了新的文献求助30
12秒前
瞿选葵发布了新的文献求助30
13秒前
鱿鱼完成签到,获得积分10
13秒前
14秒前
17秒前
顾矜应助鱿鱼采纳,获得10
17秒前
沐晴完成签到,获得积分10
17秒前
qqshown完成签到,获得积分10
17秒前
18秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463229
求助须知:如何正确求助?哪些是违规求助? 3056638
关于积分的说明 9053048
捐赠科研通 2746497
什么是DOI,文献DOI怎么找? 1506946
科研通“疑难数据库(出版商)”最低求助积分说明 696243
邀请新用户注册赠送积分活动 695849