Vessel-Targeted Compensation of Deformable Motion in Interventional Cone-Beam CT

锥束ct 计算机视觉 人工智能 运动(物理) 计算机科学 锥束ct 运动补偿 补偿(心理学) 物理 放射科 医学 计算机断层摄影术 心理学 精神分析
作者
Alexander Lu,Heyuan Huang,Yicheng Hu,Wojciech Zbijewski,Yicheng Hu,Yicheng Hu,Yicheng Hu,Yicheng Hu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103254-103254
标识
DOI:10.1016/j.media.2024.103254
摘要

The present standard of care for unresectable liver cancer is transarterial chemoembolization (TACE), which involves using chemotherapeutic particles to selectively embolize the arteries supplying hepatic tumors. Accurate volumetric identification of intricate fine vascularity is crucial for selective embolization. Three-dimensional imaging, particularly cone-beam CT (CBCT), aids in visualization and targeting of small vessels in such highly variable anatomy, but long image acquisition time results in intra-scan patient motion, which distorts vascular structures and tissue boundaries. To improve clarity of vascular anatomy and intra-procedural utility, this work proposes a targeted motion estimation and compensation framework that removes the need for any prior information or external tracking and for user interaction. Motion estimation is performed in two stages: (i) a target identification stage that segments arteries and catheters in the projection domain using a multi-view convolutional neural network to construct a coarse 3D vascular mask; and (ii) a targeted motion estimation stage that iteratively solves for the time-varying motion field via optimization of a vessel-enhancing objective function computed over the target vascular mask. The vessel-enhancing objective is derived through eigenvalues of the local image Hessian to emphasize bright tubular structures. Motion compensation is achieved via spatial transformer operators that apply time-dependent deformations to partial angle reconstructions, allowing efficient minimization via gradient backpropagation. The framework was trained and evaluated in anatomically realistic simulated motion-corrupted CBCTs mimicking TACE of hepatic tumors, at intermediate (3.0 mm) and large (6.0 mm) motion magnitudes. Motion compensation substantially improved median vascular DICE score (from 0.30 to 0.59 for large motion), image SSIM (from 0.77 to 0.93 for large motion), and vessel sharpness (0.189 mm
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zpy完成签到,获得积分10
刚刚
领导范儿应助小离采纳,获得10
2秒前
科研通AI2S应助zZ采纳,获得10
3秒前
天上的鱼完成签到,获得积分10
5秒前
7秒前
8秒前
9秒前
NexusExplorer应助lu采纳,获得10
10秒前
拉长的南蕾完成签到 ,获得积分10
10秒前
jxx发布了新的文献求助10
10秒前
古藤完成签到 ,获得积分10
11秒前
mashu完成签到,获得积分10
11秒前
12秒前
科研通AI2S应助zZ采纳,获得10
13秒前
自己发布了新的文献求助10
14秒前
杨傲多发布了新的文献求助10
14秒前
zz发布了新的文献求助10
14秒前
tao完成签到 ,获得积分10
14秒前
14秒前
研友_VZG7GZ应助猫咪采纳,获得10
15秒前
16秒前
西乡塘塘主完成签到,获得积分10
16秒前
Jasper应助huo采纳,获得10
16秒前
17秒前
小白完成签到,获得积分10
17秒前
shifeng_zai发布了新的文献求助10
19秒前
19秒前
浮浮沉沉发布了新的文献求助10
19秒前
寒冷荧荧应助月月鸟采纳,获得20
20秒前
21秒前
lu发布了新的文献求助10
22秒前
乐乐发布了新的文献求助10
22秒前
22秒前
23秒前
Ava应助自己采纳,获得10
24秒前
fanpengzhen完成签到,获得积分10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
Wendy发布了新的文献求助10
24秒前
wanci应助科研通管家采纳,获得10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112