Vessel-Targeted Compensation of Deformable Motion in Interventional Cone-Beam CT

锥束ct 计算机视觉 人工智能 运动(物理) 计算机科学 锥束ct 运动补偿 补偿(心理学) 物理 放射科 医学 计算机断层摄影术 心理学 精神分析
作者
Alexander Lu,Heyuan Huang,Yicheng Hu,Wojciech Zbijewski,Yicheng Hu,Yicheng Hu,Yicheng Hu,Yicheng Hu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103254-103254
标识
DOI:10.1016/j.media.2024.103254
摘要

The present standard of care for unresectable liver cancer is transarterial chemoembolization (TACE), which involves using chemotherapeutic particles to selectively embolize the arteries supplying hepatic tumors. Accurate volumetric identification of intricate fine vascularity is crucial for selective embolization. Three-dimensional imaging, particularly cone-beam CT (CBCT), aids in visualization and targeting of small vessels in such highly variable anatomy, but long image acquisition time results in intra-scan patient motion, which distorts vascular structures and tissue boundaries. To improve clarity of vascular anatomy and intra-procedural utility, this work proposes a targeted motion estimation and compensation framework that removes the need for any prior information or external tracking and for user interaction. Motion estimation is performed in two stages: (i) a target identification stage that segments arteries and catheters in the projection domain using a multi-view convolutional neural network to construct a coarse 3D vascular mask; and (ii) a targeted motion estimation stage that iteratively solves for the time-varying motion field via optimization of a vessel-enhancing objective function computed over the target vascular mask. The vessel-enhancing objective is derived through eigenvalues of the local image Hessian to emphasize bright tubular structures. Motion compensation is achieved via spatial transformer operators that apply time-dependent deformations to partial angle reconstructions, allowing efficient minimization via gradient backpropagation. The framework was trained and evaluated in anatomically realistic simulated motion-corrupted CBCTs mimicking TACE of hepatic tumors, at intermediate (3.0 mm) and large (6.0 mm) motion magnitudes. Motion compensation substantially improved median vascular DICE score (from 0.30 to 0.59 for large motion), image SSIM (from 0.77 to 0.93 for large motion), and vessel sharpness (0.189 mm
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章丘吴彦祖完成签到,获得积分20
刚刚
1秒前
研友_nv2r4n完成签到,获得积分10
1秒前
狂野觅云完成签到,获得积分10
1秒前
1秒前
小石完成签到,获得积分10
2秒前
独特的飞烟完成签到,获得积分10
2秒前
2秒前
科研猪完成签到,获得积分10
3秒前
大个应助qqwxp采纳,获得10
3秒前
jennifercui完成签到,获得积分10
3秒前
SXM完成签到,获得积分10
3秒前
酷酷的起眸完成签到,获得积分10
4秒前
细腻沅完成签到,获得积分10
4秒前
LILING完成签到,获得积分10
4秒前
123发布了新的文献求助10
5秒前
赖床艺术家完成签到,获得积分10
6秒前
领导范儿应助通~采纳,获得10
7秒前
端庄的黑米完成签到,获得积分10
7秒前
7秒前
领导范儿应助坤坤采纳,获得10
7秒前
8秒前
神勇的雅香应助司徒迎曼采纳,获得10
8秒前
8秒前
bkagyin应助椰子采纳,获得10
8秒前
Owen应助舒服的茹嫣采纳,获得10
8秒前
呼吸之野应助按住心动采纳,获得20
9秒前
9秒前
身为风帆发布了新的文献求助10
9秒前
changjiaren完成签到,获得积分10
9秒前
风中的怜阳完成签到,获得积分10
10秒前
自信号厂完成签到 ,获得积分10
10秒前
小蘑菇应助ccc采纳,获得10
11秒前
shuo完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
aich完成签到,获得积分10
12秒前
上官若男应助YE采纳,获得10
13秒前
Jasper应助YaoX采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740