材料科学
吸附
法拉第效率
电化学
催化作用
氧化还原
解吸
氮气
配体(生物化学)
酞菁
密度泛函理论
氨生产
纳米技术
无机化学
电极
计算化学
物理化学
有机化学
化学
受体
生物化学
作者
Yang Yang,Hanlin Wang,Xuehai Tan,Keren Jiang,Shengli Zhai,Yifan Li,Xuesong Xie,Ning Chen,Hao Zhang,Zhi Li
标识
DOI:10.1002/adfm.202403535
摘要
Abstract Electrocatalytic nitrogen (N 2 ) reduction reaction (NRR) presents a sustainable alternative to the Haber–Bosch process for ammonia (NH 3 ) synthesis. Iron phthalocyanine (FePc) is demonstrated as a promising catalyst for the electrocatalytic NRR. However, FePc with planar symmetric Fe‐N 4 sites exhibits poor N 2 adsorption and activation capabilities, resulting in an unsatisfactory NRR performance. Herein, an axial oxygen coordination strategy is developed to optimize the local electron distribution on FePc for improving N 2 adsorption and activation. The as‐obtained FePc‐O‐CP shows a superior NH 3 yield rate (59.72 µg h −1 mg −1 cat. ) and a considerable Faradaic efficiency (13.76%) in 0.1 m HCl. Density functional theory (DFT) calculations verify that the axial oxygen ligand on FePc inhibits the adsorption of H + and enhances the N 2 adsorption and activation, thereby greatly promoting NH 3 generation. This work reveals the significance of regulating the local coordination environment of single‐atom catalysts for improving electrocatalytic NRR performance and provides a feasible strategy for the rational design of atomic‐scale active sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI