Li‐Doping and Ag‐Alloying Interplay Shows the Pathway for Kesterite Solar Cells with Efficiency Over 14%

锌黄锡矿 材料科学 兴奋剂 纳米技术 光电子学 工程物理 太阳能电池 捷克先令 工程类
作者
Yuancai Gong,Alex Jiménez‐Arguijo,Axel Gon Medaille,Simon Moser,Arindam Basak,Romain Scaffidi,Romain Carron,Denis Flandre,Bart Vermang,Sergio Giraldo,Hao Xin,Alejandro Pérez‐Rodríguez,Edgardo Saucedo
出处
期刊:Advanced Functional Materials [Wiley]
被引量:5
标识
DOI:10.1002/adfm.202404669
摘要

Abstract Kesterite photovoltaic technologies are critical for the deployment of light‐harvesting devices in buildings and products, enabling energy sustainable buildings, and households. The recent improvements in kesterite power conversion efficiencies have focused on improving solution‐based precursors by improving the material phase purity, grain quality, and grain boundaries with many extrinsic doping and alloying agents (Ag, Cd, Ge…). The reported progress for solution‐based precursors has been achieved due to a grain growth in more electronically intrinsic conditions. However, the kesterite device performance is dependent on the majority carrier density and sub‐optimal carrier concentrations of 10 14 –10 15 cm −3 have been consistently reported. Increasing the majority carrier density by one order of magnitude would increase the efficiency ceiling of kesterite solar cells, making the 20% target much more realistic. In this work, LiClO 4 is introduced as a highly soluble and highly thermally stable Li precursor salt which leads to optimal (>10 16 cm −3 ) carrier concentration without a significant impact in other relevant optoelectronic properties. The findings presented in this work demonstrate that the interplay between Li‐doping and Ag‐alloying enables a reproducible and statistically significant improvement in the device performance leading to efficiencies up to 14.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
Sakura完成签到,获得积分20
5秒前
清欢发布了新的文献求助10
6秒前
虚心的羿完成签到,获得积分10
6秒前
温乘云发布了新的文献求助10
6秒前
科研小白完成签到,获得积分10
7秒前
7秒前
小小虾发布了新的文献求助10
7秒前
Hello应助俏皮的厉采纳,获得10
9秒前
领导范儿应助qaq采纳,获得10
10秒前
11秒前
12秒前
13秒前
找不完完成签到,获得积分10
13秒前
14秒前
uki完成签到,获得积分10
14秒前
共享精神应助Hayat采纳,获得30
15秒前
乐乐应助温乘云采纳,获得10
15秒前
唐Doctor发布了新的文献求助10
17秒前
竹谕发布了新的文献求助30
17秒前
summer完成签到,获得积分10
17秒前
领导范儿应助Lynn采纳,获得10
17秒前
18秒前
19秒前
20秒前
20秒前
23秒前
给刘宇宁的粉丝一篇文献吧完成签到,获得积分10
24秒前
25秒前
25秒前
jeep先生发布了新的文献求助10
27秒前
FashionBoy应助hjygzv采纳,获得10
28秒前
28秒前
老实惊蛰完成签到 ,获得积分10
29秒前
29秒前
30秒前
30秒前
QR发布了新的文献求助10
32秒前
英姑应助唐Doctor采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756737
求助须知:如何正确求助?哪些是违规求助? 3300136
关于积分的说明 10112532
捐赠科研通 3014650
什么是DOI,文献DOI怎么找? 1655610
邀请新用户注册赠送积分活动 790034
科研通“疑难数据库(出版商)”最低求助积分说明 753552