Short-term wind power prediction based on improved variational modal decomposition, least absolute shrinkage and selection operator, and BiGRU networks

收缩率 期限(时间) 情态动词 选择(遗传算法) 分解 操作员(生物学) 功率(物理) 数学 数学优化 算法 计算机科学 工程类 人工智能 材料科学 统计 物理 复合材料 化学 热力学 基因 抑制因子 转录因子 有机化学 量子力学 生物化学
作者
Miaosen Hu,Guoqiang Zheng,Zhonge Su,Lei Kong,Guodong Wang
出处
期刊:Energy [Elsevier BV]
卷期号:303: 131951-131951
标识
DOI:10.1016/j.energy.2024.131951
摘要

Wind energy is a clean resource widely utilized as a renewable energy source. However, due to its inherent strong volatility and the multitude of influencing factors, it is challenging to accurately predict wind power. To address these issues, an IVMD-LASSO-BiGRU model, comprising Improved Variational Mode Decomposition (IVMD), Least Absolute Shrinkage and Selection Operator (LASSO), and Bidirectional Gated Recurrent Unit (BiGRU), is proposed for forecasting. Firstly, based on the sparse prior knowledge of each component constructed in the variational model by VMD, the optimal decomposition mode number K is determined at the inflexion point where the sparsity index shifts from rising to falling. The original wind power sequence is then decomposed into a series of Intrinsic Mode Functions (IMFs) using VMD with the optimal K value, thereby reducing the volatility of the original sequence. Secondly, LASSO is employed to select key features from meteorological data, historical wind power, and IMFs, thereby reducing the data dimension. Subsequently, BiGRU is utilized to fully extract the temporal features of the input data, establishing the mapping between input and output. Experimental results demonstrate that on three different datasets, the R2 values of the proposed forecasting method reach 0.9872, 0.9917, and 0.9941, respectively. Compared to the traditional BiGRU model, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are reduced by an average of 57.56% and 58.88%, respectively. Thus, it is evident that the proposed method enhances the accuracy of short-term wind power forecasting, providing a basis for adjusting power generation plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三毛变相完成签到,获得积分10
刚刚
1秒前
Unique发布了新的文献求助10
1秒前
shanmao完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
流香完成签到,获得积分10
4秒前
4秒前
uaing发布了新的文献求助10
5秒前
姜睿思发布了新的文献求助10
6秒前
晶晶发布了新的文献求助10
6秒前
烂漫念文发布了新的文献求助10
9秒前
科研通AI5应助myy采纳,获得10
11秒前
lemonkane完成签到,获得积分10
12秒前
13秒前
14秒前
toda_erica完成签到,获得积分10
15秒前
从容发布了新的文献求助10
16秒前
单薄的新梅完成签到,获得积分10
16秒前
16秒前
17秒前
suo发布了新的文献求助10
17秒前
lzx应助舒服的牛排采纳,获得100
18秒前
可爱的函函应助rong采纳,获得10
19秒前
隐形曼青应助菠萝贺贺采纳,获得10
20秒前
活力翠霜发布了新的文献求助10
21秒前
23秒前
23秒前
欢呼的飞荷完成签到 ,获得积分10
24秒前
25秒前
crazy发布了新的文献求助10
28秒前
taowang发布了新的文献求助10
30秒前
30秒前
苏苏完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
惠小之完成签到,获得积分10
35秒前
菠萝贺贺发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991794
求助须知:如何正确求助?哪些是违规求助? 3532981
关于积分的说明 11260197
捐赠科研通 3272241
什么是DOI,文献DOI怎么找? 1805664
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809405