Short-term wind power prediction based on improved variational modal decomposition, least absolute shrinkage and selection operator, and BiGRU networks

收缩率 期限(时间) 情态动词 选择(遗传算法) 分解 操作员(生物学) 功率(物理) 数学 数学优化 算法 计算机科学 工程类 人工智能 材料科学 统计 物理 复合材料 化学 热力学 基因 抑制因子 转录因子 有机化学 量子力学 生物化学
作者
Miaosen Hu,Guoqiang Zheng,Zhonge Su,Lei Kong,Guodong Wang
出处
期刊:Energy [Elsevier BV]
卷期号:303: 131951-131951
标识
DOI:10.1016/j.energy.2024.131951
摘要

Wind energy is a clean resource widely utilized as a renewable energy source. However, due to its inherent strong volatility and the multitude of influencing factors, it is challenging to accurately predict wind power. To address these issues, an IVMD-LASSO-BiGRU model, comprising Improved Variational Mode Decomposition (IVMD), Least Absolute Shrinkage and Selection Operator (LASSO), and Bidirectional Gated Recurrent Unit (BiGRU), is proposed for forecasting. Firstly, based on the sparse prior knowledge of each component constructed in the variational model by VMD, the optimal decomposition mode number K is determined at the inflexion point where the sparsity index shifts from rising to falling. The original wind power sequence is then decomposed into a series of Intrinsic Mode Functions (IMFs) using VMD with the optimal K value, thereby reducing the volatility of the original sequence. Secondly, LASSO is employed to select key features from meteorological data, historical wind power, and IMFs, thereby reducing the data dimension. Subsequently, BiGRU is utilized to fully extract the temporal features of the input data, establishing the mapping between input and output. Experimental results demonstrate that on three different datasets, the R2 values of the proposed forecasting method reach 0.9872, 0.9917, and 0.9941, respectively. Compared to the traditional BiGRU model, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are reduced by an average of 57.56% and 58.88%, respectively. Thus, it is evident that the proposed method enhances the accuracy of short-term wind power forecasting, providing a basis for adjusting power generation plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小章鱼完成签到 ,获得积分10
1秒前
1秒前
theinu完成签到,获得积分10
1秒前
不想干活应助柯燕婷采纳,获得10
2秒前
琯柠完成签到 ,获得积分10
4秒前
4秒前
是同学发布了新的文献求助30
5秒前
佳言2009发布了新的文献求助10
6秒前
搞科研的静静完成签到,获得积分10
6秒前
上帝发誓完成签到,获得积分10
7秒前
7秒前
受伤纹完成签到 ,获得积分10
8秒前
唐唐完成签到 ,获得积分10
9秒前
ttqql发布了新的文献求助10
10秒前
激昂的秀发完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
是同学完成签到,获得积分20
13秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
安琪完成签到,获得积分10
14秒前
爆米花应助科研通管家采纳,获得30
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
Ale发布了新的文献求助10
14秒前
14秒前
成就的秋应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得20
14秒前
成就的秋应助科研通管家采纳,获得10
14秒前
14秒前
香飘飘完成签到,获得积分10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
社会主义接班人完成签到,获得积分10
16秒前
陈静发布了新的文献求助10
16秒前
WeiSONG完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4543011
求助须知:如何正确求助?哪些是违规求助? 3975808
关于积分的说明 12312342
捐赠科研通 3643577
什么是DOI,文献DOI怎么找? 2006595
邀请新用户注册赠送积分活动 1041927
科研通“疑难数据库(出版商)”最低求助积分说明 931067