Short-term wind power prediction based on improved variational modal decomposition, least absolute shrinkage and selection operator, and BiGRU networks

收缩率 期限(时间) 情态动词 选择(遗传算法) 分解 操作员(生物学) 功率(物理) 数学 数学优化 算法 计算机科学 工程类 人工智能 材料科学 统计 物理 复合材料 化学 热力学 生物化学 有机化学 抑制因子 量子力学 转录因子 基因
作者
Miaosen Hu,Guoqiang Zheng,Zhonge Su,Lei Kong,Guodong Wang
出处
期刊:Energy [Elsevier]
卷期号:303: 131951-131951
标识
DOI:10.1016/j.energy.2024.131951
摘要

Wind energy is a clean resource widely utilized as a renewable energy source. However, due to its inherent strong volatility and the multitude of influencing factors, it is challenging to accurately predict wind power. To address these issues, an IVMD-LASSO-BiGRU model, comprising Improved Variational Mode Decomposition (IVMD), Least Absolute Shrinkage and Selection Operator (LASSO), and Bidirectional Gated Recurrent Unit (BiGRU), is proposed for forecasting. Firstly, based on the sparse prior knowledge of each component constructed in the variational model by VMD, the optimal decomposition mode number K is determined at the inflexion point where the sparsity index shifts from rising to falling. The original wind power sequence is then decomposed into a series of Intrinsic Mode Functions (IMFs) using VMD with the optimal K value, thereby reducing the volatility of the original sequence. Secondly, LASSO is employed to select key features from meteorological data, historical wind power, and IMFs, thereby reducing the data dimension. Subsequently, BiGRU is utilized to fully extract the temporal features of the input data, establishing the mapping between input and output. Experimental results demonstrate that on three different datasets, the R2 values of the proposed forecasting method reach 0.9872, 0.9917, and 0.9941, respectively. Compared to the traditional BiGRU model, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are reduced by an average of 57.56% and 58.88%, respectively. Thus, it is evident that the proposed method enhances the accuracy of short-term wind power forecasting, providing a basis for adjusting power generation plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南屿完成签到,获得积分10
刚刚
3秒前
凉拌折耳根关注了科研通微信公众号
5秒前
Littlerain~完成签到,获得积分10
6秒前
明明发布了新的文献求助10
9秒前
XD824完成签到,获得积分10
9秒前
11秒前
12秒前
XD824发布了新的文献求助10
12秒前
大个应助甜甜圈采纳,获得10
14秒前
林lin发布了新的文献求助10
15秒前
16秒前
Han完成签到,获得积分20
17秒前
Alanni完成签到 ,获得积分10
17秒前
ZMYI完成签到,获得积分20
18秒前
幽默的凡完成签到 ,获得积分10
18秒前
20秒前
Orange应助甜甜圈采纳,获得10
20秒前
熊猫发布了新的文献求助30
21秒前
Charon发布了新的文献求助10
23秒前
Lucas应助林lin采纳,获得10
23秒前
25秒前
李健的小迷弟应助甜甜圈采纳,获得10
26秒前
整齐的大开完成签到 ,获得积分10
26秒前
小蘑菇应助伊麦香城采纳,获得10
27秒前
30秒前
IAMXC发布了新的文献求助10
37秒前
热情的清完成签到,获得积分10
38秒前
liang完成签到 ,获得积分10
38秒前
共享精神应助long0809采纳,获得10
40秒前
T1kz4完成签到 ,获得积分10
41秒前
CipherSage应助IAMXC采纳,获得10
42秒前
42秒前
冰柠完成签到,获得积分10
46秒前
张张张完成签到 ,获得积分10
49秒前
打打应助mrcat采纳,获得10
49秒前
DrD完成签到,获得积分10
52秒前
周冬华完成签到,获得积分10
53秒前
Owen应助公冶惊蛰采纳,获得30
53秒前
李健应助下雪天的土豆采纳,获得10
56秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791107
关于积分的说明 7797976
捐赠科研通 2447576
什么是DOI,文献DOI怎么找? 1301949
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194