Short-term wind power prediction based on improved variational modal decomposition, least absolute shrinkage and selection operator, and BiGRU networks

收缩率 期限(时间) 情态动词 选择(遗传算法) 分解 操作员(生物学) 功率(物理) 数学 数学优化 算法 计算机科学 工程类 人工智能 材料科学 统计 物理 复合材料 化学 热力学 生物化学 有机化学 抑制因子 量子力学 转录因子 基因
作者
Miaosen Hu,Guoqiang Zheng,Zhonge Su,Lei Kong,Guodong Wang
出处
期刊:Energy [Elsevier]
卷期号:303: 131951-131951
标识
DOI:10.1016/j.energy.2024.131951
摘要

Wind energy is a clean resource widely utilized as a renewable energy source. However, due to its inherent strong volatility and the multitude of influencing factors, it is challenging to accurately predict wind power. To address these issues, an IVMD-LASSO-BiGRU model, comprising Improved Variational Mode Decomposition (IVMD), Least Absolute Shrinkage and Selection Operator (LASSO), and Bidirectional Gated Recurrent Unit (BiGRU), is proposed for forecasting. Firstly, based on the sparse prior knowledge of each component constructed in the variational model by VMD, the optimal decomposition mode number K is determined at the inflexion point where the sparsity index shifts from rising to falling. The original wind power sequence is then decomposed into a series of Intrinsic Mode Functions (IMFs) using VMD with the optimal K value, thereby reducing the volatility of the original sequence. Secondly, LASSO is employed to select key features from meteorological data, historical wind power, and IMFs, thereby reducing the data dimension. Subsequently, BiGRU is utilized to fully extract the temporal features of the input data, establishing the mapping between input and output. Experimental results demonstrate that on three different datasets, the R2 values of the proposed forecasting method reach 0.9872, 0.9917, and 0.9941, respectively. Compared to the traditional BiGRU model, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are reduced by an average of 57.56% and 58.88%, respectively. Thus, it is evident that the proposed method enhances the accuracy of short-term wind power forecasting, providing a basis for adjusting power generation plans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助辛勤的映波采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
执着秋白发布了新的文献求助10
3秒前
wanzhao发布了新的文献求助30
6秒前
哈哈哈发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
12秒前
12秒前
14秒前
清晨牛完成签到,获得积分10
16秒前
科研通AI6应助比奇堡力工采纳,获得10
17秒前
17秒前
落后的嚓茶完成签到,获得积分20
17秒前
哈哈哈完成签到,获得积分20
18秒前
pose关注了科研通微信公众号
19秒前
汪蔓蔓完成签到 ,获得积分10
19秒前
哈罗发布了新的文献求助10
19秒前
jiaheyuan发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
隐形曼青应助yyx164采纳,获得10
20秒前
Revision完成签到,获得积分10
20秒前
科研通AI6应助李珅玥采纳,获得30
20秒前
21秒前
21秒前
gfjh完成签到,获得积分10
22秒前
23秒前
舒适傲白发布了新的文献求助10
23秒前
水泥酱发布了新的文献求助100
23秒前
浮游应助陶醉采纳,获得10
24秒前
薄荷味完成签到,获得积分10
24秒前
L1q完成签到,获得积分10
24秒前
无极微光应助舒适的半芹采纳,获得20
24秒前
小小Li完成签到,获得积分10
25秒前
马老师发布了新的文献求助10
25秒前
执着秋白完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039