Short-term wind power prediction based on improved variational modal decomposition, least absolute shrinkage and selection operator, and BiGRU networks

收缩率 期限(时间) 情态动词 选择(遗传算法) 分解 操作员(生物学) 功率(物理) 数学 数学优化 算法 计算机科学 工程类 人工智能 材料科学 统计 物理 复合材料 化学 热力学 基因 抑制因子 转录因子 有机化学 量子力学 生物化学
作者
Miaosen Hu,Guoqiang Zheng,Zhonge Su,Lei Kong,Guodong Wang
出处
期刊:Energy [Elsevier]
卷期号:303: 131951-131951
标识
DOI:10.1016/j.energy.2024.131951
摘要

Wind energy is a clean resource widely utilized as a renewable energy source. However, due to its inherent strong volatility and the multitude of influencing factors, it is challenging to accurately predict wind power. To address these issues, an IVMD-LASSO-BiGRU model, comprising Improved Variational Mode Decomposition (IVMD), Least Absolute Shrinkage and Selection Operator (LASSO), and Bidirectional Gated Recurrent Unit (BiGRU), is proposed for forecasting. Firstly, based on the sparse prior knowledge of each component constructed in the variational model by VMD, the optimal decomposition mode number K is determined at the inflexion point where the sparsity index shifts from rising to falling. The original wind power sequence is then decomposed into a series of Intrinsic Mode Functions (IMFs) using VMD with the optimal K value, thereby reducing the volatility of the original sequence. Secondly, LASSO is employed to select key features from meteorological data, historical wind power, and IMFs, thereby reducing the data dimension. Subsequently, BiGRU is utilized to fully extract the temporal features of the input data, establishing the mapping between input and output. Experimental results demonstrate that on three different datasets, the R2 values of the proposed forecasting method reach 0.9872, 0.9917, and 0.9941, respectively. Compared to the traditional BiGRU model, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are reduced by an average of 57.56% and 58.88%, respectively. Thus, it is evident that the proposed method enhances the accuracy of short-term wind power forecasting, providing a basis for adjusting power generation plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助热心冷亦采纳,获得10
刚刚
小妮子完成签到,获得积分10
刚刚
实验室同学完成签到,获得积分10
1秒前
甜美白云发布了新的文献求助10
1秒前
NICAI完成签到,获得积分0
1秒前
小猪坨完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
瑶瑶发布了新的文献求助10
2秒前
啊啊啊发布了新的文献求助10
2秒前
冷艳的寻冬完成签到,获得积分10
3秒前
3秒前
大个应助HQ采纳,获得10
3秒前
3秒前
lcm发布了新的文献求助10
3秒前
4秒前
yoyo发布了新的文献求助10
4秒前
爆米花应助崔建采纳,获得10
4秒前
4秒前
dawnyue完成签到,获得积分10
4秒前
xumy完成签到,获得积分20
5秒前
5秒前
慧慧子完成签到,获得积分20
5秒前
6秒前
6秒前
在水一方应助Du采纳,获得10
6秒前
Xdhcg发布了新的文献求助20
7秒前
愿好应助xukaixuan001采纳,获得10
7秒前
8秒前
8秒前
甜美白云完成签到,获得积分20
8秒前
科研通AI2S应助yueyue采纳,获得20
9秒前
JamesPei应助xieyin717采纳,获得10
9秒前
浮游应助自由蓉采纳,获得10
9秒前
啊啊啊完成签到,获得积分10
10秒前
yyf发布了新的文献求助10
10秒前
赘婿应助zhanzhanzhan采纳,获得10
10秒前
10秒前
10秒前
xiuxue424发布了新的文献求助10
11秒前
Owen应助舒心的芝麻采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728