Combining Deep Learning Models for Improved Drug Repurposing: Advancements and an Extended Solution Methodology

重新调整用途 药物重新定位 计算机科学 人工智能 深度学习 机器学习 药品 工程类 药理学 医学 废物管理
作者
Utku Köse,Ömer Deperlıoğlu,Ecir Uğur Küçüksille,Gokhan Turan
标识
DOI:10.1109/icict60155.2024.10544998
摘要

Nowadays, major advancements through Artificial Intelligence (AI) were led by Deep Learning-based solutions. Considering their robust and extensive data processing mechanisms, Deep Learning (DL) models ensure great role in advancing solutions for real-world problems. Especially medical applications have been significantly improved by research studies as a result of intensive DL synergy. At this point, drug discovery has been one of the most remarkable fields where DL has been used in especially last few years. In the context of drug discovery studies, drug repurposing has a unique place to enable known drugs to be used for different diseases. As this is a remarkable way of optimizing discovery and treatment phases, use of DL for drug repurposing applications has still open areas to go. Objective of this paper is to examine the potential of combined DL models for improving drug repurposing and introduce a solution methodology, which includes use of multiple DL models to build a decision support system. It has been also aimed to support the system with computational models and Generative AI route to extend the capabilities towards a Digital Twin related approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
funny发布了新的文献求助10
2秒前
4秒前
centlay发布了新的文献求助50
4秒前
5秒前
6秒前
Olivia完成签到,获得积分10
7秒前
漂亮钢铁侠完成签到,获得积分10
8秒前
香蕉觅云应助小林采纳,获得10
8秒前
8秒前
8秒前
高c发布了新的文献求助10
9秒前
10秒前
ZZY完成签到 ,获得积分10
12秒前
NexusExplorer应助Gyaz采纳,获得10
12秒前
英俊的铭应助微微采纳,获得10
13秒前
13秒前
绝情继父发布了新的文献求助10
13秒前
14秒前
思源应助辣子鸡不放辣采纳,获得10
15秒前
16秒前
funny发布了新的文献求助10
20秒前
21秒前
科研顺完成签到 ,获得积分10
22秒前
chenyutong发布了新的文献求助10
23秒前
科研通AI2S应助粗暴的楼房采纳,获得30
24秒前
24秒前
25秒前
25秒前
还行一般完成签到,获得积分10
26秒前
28秒前
29秒前
giugiu完成签到,获得积分20
29秒前
29秒前
CADD_Kelvin发布了新的文献求助10
30秒前
bton完成签到,获得积分10
30秒前
in应助微微采纳,获得20
30秒前
薛同学发布了新的文献求助10
31秒前
Agoni完成签到,获得积分10
31秒前
31秒前
星辰大海应助懵懂的钢笔采纳,获得10
31秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214629
求助须知:如何正确求助?哪些是违规求助? 2863260
关于积分的说明 8137795
捐赠科研通 2529453
什么是DOI,文献DOI怎么找? 1363698
科研通“疑难数据库(出版商)”最低求助积分说明 643908
邀请新用户注册赠送积分活动 616451