电解质
阴极
锂(药物)
离子
材料科学
导电体
接口(物质)
锂离子电池的纳米结构
化学工程
电化学
化学
电极
复合材料
有机化学
物理化学
工程类
医学
毛细管数
毛细管作用
内分泌学
作者
Xiaolong Wu,Yejuan Xue,Zezhuo Li,Minghao Huang,Xiaohui Song,Qiang Chang,Yongxin Ma,Zhimei Huang,Hongfa Xiang,Yunhui Huang
标识
DOI:10.1016/j.cej.2024.152512
摘要
The structural stability and ionic conductivity of the cathode electrolyte interface (CEI) film at high voltages are crucial to the nickel-rich layered cathode in Li-ion batteries (LIBs). These characteristics are largely determined by electrolyte components. Herein, an air-stable organic cyclophosphate salt named lithium 1, 3, 2-dioxaphosphinan-2-olate-2-oxide (LiDOP) is designed and synthesized as a CEI forming additive. It preferentially oxidizes and undergoes opening-ring polymerization under charging to form an organic–inorganic hybrid polymers with –LiPO4 segments and –(CH2)3– alternately connected on the cathode surface. Such a structure endows CEI film with high ionic conductivity, flexibility and mechanical strength, which can ameliorate the structure phase transformation, suppress the transition metal ion dissolution and enhance the interfacial stability at high cut-off voltage. The electrolyte with 0.2 wt% LiDOP endows 4.3 V-charged Li||LiNi0.8Co0.1Mn0.1O2 battery with 83.2 % capacity retention after 200 cycles at 5C rate. The graphite||NCM811 pouch cell shows a capacity retention of 85.6 % after 150 cycles under a 4.5 V voltage, while the cell without LiDOP shows only 23.5 %. Our work demonstrates the effectiveness of covalently coupled P-O-Li compounds as CEI film in stabilizing the interface, which provides a guidance for the electrolyte design in high-voltage LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI