End-to-end model for automatic seizure detection using supervised contrastive learning

计算机科学 端到端原则 人工智能 机器学习 语音识别 自然语言处理 模式识别(心理学)
作者
Haotian Li,Xingchen Dong,Xiangwen Zhong,Chuanyu Li,Haozhou Cui,Weidong Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108665-108665 被引量:2
标识
DOI:10.1016/j.engappai.2024.108665
摘要

Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures, caused by abnormal electrical activity in cerebral neurons. Given that it is one of the most common neurological disorders globally, the efficient and accurate automatic seizure detection is urgently needed in the diagnosis of epilepsy to reduce the workload of continuous electroencephalogram (EEG) monitoring. Current deep learning based seizure detection approaches usually employ cross-entropy loss as objective function, which generally suffer from inadequate utilization of sample labels and poor classification margins, resulting in decreased performance in seizure detection. In this study, we propose an end-to-end automatic seizure detection framework based on supervised contrastive learning, which effectively utilizes labeled EEG to cluster similar samples while separating dissimilar ones. A supervised contrastive learning loss is employed to optimize classification boundaries by making full use of EEG labels. We employ long-term continuous EEG for evaluation. Given the presence of various noise and interferences, assessment on long-term continuous EEG proves to be more challenging. Post-processing techniques such as smoothing filter, threshold judgment, and collar technique are further adopted to diminish the artifact impacts on seizure detection performance. The proposed method is evaluated on the publicly available Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) scalp EEG dataset, achieving an event-based sensitivity of 99.71% and a false detection rate (FDR) of 0.35/h.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒果发布了新的文献求助10
刚刚
刚刚
哈哈驳回了所所应助
1秒前
鬼笔环肽应助更深的蓝采纳,获得50
1秒前
2秒前
Leeyh完成签到,获得积分10
3秒前
3秒前
略略略发布了新的文献求助10
3秒前
4秒前
4秒前
导师老八发布了新的文献求助10
4秒前
云柔竹劲发布了新的文献求助10
6秒前
123321发布了新的文献求助10
7秒前
7秒前
wsj发布了新的文献求助30
10秒前
领导范儿应助木木采纳,获得10
11秒前
星辰大海应助神樂彩兔采纳,获得10
11秒前
天天快乐应助心海采纳,获得10
11秒前
13秒前
13秒前
14秒前
爆米花应助叶潭采纳,获得10
15秒前
量子星尘发布了新的文献求助150
15秒前
害怕的元正完成签到,获得积分20
15秒前
17秒前
芒果完成签到,获得积分10
17秒前
wq发布了新的文献求助10
17秒前
刘谦发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
在水一方应助pura卷卷采纳,获得30
19秒前
20秒前
21秒前
22秒前
桐桐应助sunshine采纳,获得10
22秒前
斯提亚拉完成签到,获得积分10
23秒前
心海发布了新的文献求助10
23秒前
鬼笔环肽应助拼搏向上采纳,获得10
23秒前
明明完成签到,获得积分20
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
International Handbook of Earthquake & Engineering Seismology, Part B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146677
求助须知:如何正确求助?哪些是违规求助? 4343554
关于积分的说明 13527098
捐赠科研通 4184701
什么是DOI,文献DOI怎么找? 2294782
邀请新用户注册赠送积分活动 1295250
关于科研通互助平台的介绍 1238341