End-to-end model for automatic seizure detection using supervised contrastive learning

计算机科学 端到端原则 人工智能 机器学习 语音识别 自然语言处理 模式识别(心理学)
作者
Haotian Li,Xingchen Dong,Xiangwen Zhong,Chuanyu Li,Haozhou Cui,Weidong Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108665-108665 被引量:2
标识
DOI:10.1016/j.engappai.2024.108665
摘要

Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures, caused by abnormal electrical activity in cerebral neurons. Given that it is one of the most common neurological disorders globally, the efficient and accurate automatic seizure detection is urgently needed in the diagnosis of epilepsy to reduce the workload of continuous electroencephalogram (EEG) monitoring. Current deep learning based seizure detection approaches usually employ cross-entropy loss as objective function, which generally suffer from inadequate utilization of sample labels and poor classification margins, resulting in decreased performance in seizure detection. In this study, we propose an end-to-end automatic seizure detection framework based on supervised contrastive learning, which effectively utilizes labeled EEG to cluster similar samples while separating dissimilar ones. A supervised contrastive learning loss is employed to optimize classification boundaries by making full use of EEG labels. We employ long-term continuous EEG for evaluation. Given the presence of various noise and interferences, assessment on long-term continuous EEG proves to be more challenging. Post-processing techniques such as smoothing filter, threshold judgment, and collar technique are further adopted to diminish the artifact impacts on seizure detection performance. The proposed method is evaluated on the publicly available Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) scalp EEG dataset, achieving an event-based sensitivity of 99.71% and a false detection rate (FDR) of 0.35/h.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
cyh完成签到,获得积分10
2秒前
坚强枫完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
傅傅发布了新的文献求助30
3秒前
4秒前
kim发布了新的文献求助10
6秒前
受伤的小松鼠应助一沙采纳,获得10
6秒前
6秒前
7秒前
科研通AI2S应助扶余山本采纳,获得10
7秒前
Lucas应助拉面小丸子采纳,获得10
7秒前
Fengh发布了新的文献求助10
8秒前
wy.he举报涵Allen求助涉嫌违规
8秒前
万椿发布了新的文献求助10
8秒前
8秒前
9秒前
若冰完成签到,获得积分10
9秒前
9秒前
共享精神应助i7采纳,获得10
10秒前
xiong发布了新的文献求助10
10秒前
10秒前
11秒前
awrawsaf发布了新的文献求助10
11秒前
深情安青应助gshsj采纳,获得10
12秒前
12秒前
12秒前
13秒前
一帆风顺发布了新的文献求助10
13秒前
Devoted完成签到,获得积分20
14秒前
14秒前
香蕉觅云应助实验的兔纸采纳,获得10
14秒前
15秒前
SYLH应助锅锅采纳,获得10
15秒前
15秒前
赫哲瀚完成签到,获得积分10
15秒前
哈皮完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842039
求助须知:如何正确求助?哪些是违规求助? 3384234
关于积分的说明 10533093
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709663
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953