End-to-end model for automatic seizure detection using supervised contrastive learning

计算机科学 端到端原则 人工智能 机器学习 语音识别 自然语言处理 模式识别(心理学)
作者
Haotian Li,Xingchen Dong,Xiangwen Zhong,Chuanyu Li,Haozhou Cui,Weidong Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108665-108665 被引量:2
标识
DOI:10.1016/j.engappai.2024.108665
摘要

Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures, caused by abnormal electrical activity in cerebral neurons. Given that it is one of the most common neurological disorders globally, the efficient and accurate automatic seizure detection is urgently needed in the diagnosis of epilepsy to reduce the workload of continuous electroencephalogram (EEG) monitoring. Current deep learning based seizure detection approaches usually employ cross-entropy loss as objective function, which generally suffer from inadequate utilization of sample labels and poor classification margins, resulting in decreased performance in seizure detection. In this study, we propose an end-to-end automatic seizure detection framework based on supervised contrastive learning, which effectively utilizes labeled EEG to cluster similar samples while separating dissimilar ones. A supervised contrastive learning loss is employed to optimize classification boundaries by making full use of EEG labels. We employ long-term continuous EEG for evaluation. Given the presence of various noise and interferences, assessment on long-term continuous EEG proves to be more challenging. Post-processing techniques such as smoothing filter, threshold judgment, and collar technique are further adopted to diminish the artifact impacts on seizure detection performance. The proposed method is evaluated on the publicly available Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) scalp EEG dataset, achieving an event-based sensitivity of 99.71% and a false detection rate (FDR) of 0.35/h.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浅辰发布了新的文献求助20
1秒前
自由文博完成签到 ,获得积分10
1秒前
5秒前
6秒前
7秒前
7秒前
可爱的函函应助月亮采纳,获得10
8秒前
冯岗发布了新的文献求助10
9秒前
lalala发布了新的文献求助10
10秒前
点点发布了新的文献求助10
10秒前
阳光完成签到,获得积分10
10秒前
Ava应助菜鸡5号采纳,获得10
11秒前
Xiaoshen发布了新的文献求助10
11秒前
昵称发布了新的文献求助10
11秒前
今后应助青青采纳,获得10
12秒前
科研通AI2S应助星南秋采纳,获得10
12秒前
splendore完成签到,获得积分10
13秒前
虚心以丹完成签到,获得积分10
14秒前
15秒前
科目三应助theThreeMagi采纳,获得10
15秒前
17秒前
17秒前
吴媛媛完成签到 ,获得积分10
17秒前
阳光发布了新的文献求助10
18秒前
Hello应助核桃采纳,获得10
18秒前
19秒前
小葵葵葵葵完成签到,获得积分20
19秒前
芮rich完成签到,获得积分10
20秒前
20秒前
lalala发布了新的文献求助10
21秒前
21秒前
彭于晏应助细腻的仙人掌采纳,获得10
21秒前
22秒前
lzx关闭了lzx文献求助
22秒前
Claudia完成签到,获得积分10
22秒前
曾文治发布了新的文献求助10
24秒前
椿iii完成签到 ,获得积分10
24秒前
25秒前
25秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340313
求助须知:如何正确求助?哪些是违规求助? 2968359
关于积分的说明 8633331
捐赠科研通 2647907
什么是DOI,文献DOI怎么找? 1449881
科研通“疑难数据库(出版商)”最低求助积分说明 671549
邀请新用户注册赠送积分活动 660594