End-to-end model for automatic seizure detection using supervised contrastive learning

计算机科学 端到端原则 人工智能 机器学习 语音识别 自然语言处理 模式识别(心理学)
作者
Haotian Li,Xingchen Dong,Xiangwen Zhong,Chuanyu Li,Haozhou Cui,Weidong Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108665-108665 被引量:2
标识
DOI:10.1016/j.engappai.2024.108665
摘要

Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures, caused by abnormal electrical activity in cerebral neurons. Given that it is one of the most common neurological disorders globally, the efficient and accurate automatic seizure detection is urgently needed in the diagnosis of epilepsy to reduce the workload of continuous electroencephalogram (EEG) monitoring. Current deep learning based seizure detection approaches usually employ cross-entropy loss as objective function, which generally suffer from inadequate utilization of sample labels and poor classification margins, resulting in decreased performance in seizure detection. In this study, we propose an end-to-end automatic seizure detection framework based on supervised contrastive learning, which effectively utilizes labeled EEG to cluster similar samples while separating dissimilar ones. A supervised contrastive learning loss is employed to optimize classification boundaries by making full use of EEG labels. We employ long-term continuous EEG for evaluation. Given the presence of various noise and interferences, assessment on long-term continuous EEG proves to be more challenging. Post-processing techniques such as smoothing filter, threshold judgment, and collar technique are further adopted to diminish the artifact impacts on seizure detection performance. The proposed method is evaluated on the publicly available Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) scalp EEG dataset, achieving an event-based sensitivity of 99.71% and a false detection rate (FDR) of 0.35/h.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助小哥采纳,获得10
1秒前
顺利的梦易完成签到,获得积分10
1秒前
1秒前
灵巧书蝶发布了新的文献求助30
2秒前
猫捡球完成签到,获得积分10
2秒前
小小娜发布了新的文献求助10
3秒前
3秒前
Owen应助顺利的梦易采纳,获得10
5秒前
浅帅发布了新的文献求助10
6秒前
马马完成签到,获得积分10
7秒前
阳光水壶发布了新的文献求助10
7秒前
7秒前
adgcxvjj完成签到,获得积分10
8秒前
王中秀完成签到,获得积分10
9秒前
大力丹琴完成签到,获得积分10
10秒前
Muhammad完成签到,获得积分10
10秒前
lll完成签到,获得积分10
10秒前
南宫士晋完成签到 ,获得积分10
11秒前
乐观完成签到,获得积分10
11秒前
12秒前
Felicity完成签到 ,获得积分10
12秒前
Yangyang完成签到,获得积分10
12秒前
小小娜完成签到,获得积分10
13秒前
faker完成签到,获得积分10
13秒前
13秒前
16秒前
xiaofengche完成签到,获得积分10
16秒前
快乐难敌发布了新的文献求助30
16秒前
量子星尘发布了新的文献求助10
16秒前
xinying发布了新的文献求助10
16秒前
17秒前
vvv完成签到 ,获得积分10
17秒前
18秒前
20秒前
21秒前
22秒前
leaolf应助MWY采纳,获得10
22秒前
23秒前
自由完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600946
求助须知:如何正确求助?哪些是违规求助? 4010853
关于积分的说明 12417790
捐赠科研通 3690768
什么是DOI,文献DOI怎么找? 2034618
邀请新用户注册赠送积分活动 1067979
科研通“疑难数据库(出版商)”最低求助积分说明 952609