End-to-end model for automatic seizure detection using supervised contrastive learning

计算机科学 端到端原则 人工智能 机器学习 语音识别 自然语言处理 模式识别(心理学)
作者
Haotian Li,Xingchen Dong,Xiangwen Zhong,Chuanyu Li,Haozhou Cui,Weidong Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108665-108665 被引量:2
标识
DOI:10.1016/j.engappai.2024.108665
摘要

Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures, caused by abnormal electrical activity in cerebral neurons. Given that it is one of the most common neurological disorders globally, the efficient and accurate automatic seizure detection is urgently needed in the diagnosis of epilepsy to reduce the workload of continuous electroencephalogram (EEG) monitoring. Current deep learning based seizure detection approaches usually employ cross-entropy loss as objective function, which generally suffer from inadequate utilization of sample labels and poor classification margins, resulting in decreased performance in seizure detection. In this study, we propose an end-to-end automatic seizure detection framework based on supervised contrastive learning, which effectively utilizes labeled EEG to cluster similar samples while separating dissimilar ones. A supervised contrastive learning loss is employed to optimize classification boundaries by making full use of EEG labels. We employ long-term continuous EEG for evaluation. Given the presence of various noise and interferences, assessment on long-term continuous EEG proves to be more challenging. Post-processing techniques such as smoothing filter, threshold judgment, and collar technique are further adopted to diminish the artifact impacts on seizure detection performance. The proposed method is evaluated on the publicly available Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) scalp EEG dataset, achieving an event-based sensitivity of 99.71% and a false detection rate (FDR) of 0.35/h.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
kangkang完成签到,获得积分10
1秒前
丘比特应助东风第一枝采纳,获得10
1秒前
1秒前
丰知然应助normankasimodo采纳,获得10
2秒前
黑森林发布了新的文献求助30
2秒前
hu970发布了新的文献求助10
2秒前
2秒前
俭朴夜雪发布了新的文献求助30
2秒前
林上草应助lzj001983采纳,获得10
2秒前
小白完成签到,获得积分20
2秒前
药疯了完成签到,获得积分20
3秒前
桐桐应助123采纳,获得10
3秒前
风中寄云发布了新的文献求助10
3秒前
buuyoo发布了新的文献求助10
3秒前
zjudxn发布了新的文献求助10
3秒前
春夏爱科研完成签到,获得积分10
4秒前
飞翔的西红柿完成签到,获得积分10
4秒前
xzy完成签到,获得积分10
4秒前
L.发布了新的文献求助20
5秒前
Verdigris完成签到,获得积分10
6秒前
cindy完成签到,获得积分10
6秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
6秒前
金色热浪完成签到 ,获得积分10
6秒前
快去读文献完成签到,获得积分20
6秒前
斯文静曼完成签到,获得积分10
6秒前
6秒前
6秒前
拼搏思卉关注了科研通微信公众号
7秒前
7秒前
liudiqiu应助酷酷的起眸采纳,获得10
7秒前
研友_8yN60L发布了新的文献求助10
7秒前
所所应助VDC采纳,获得10
7秒前
xxq发布了新的文献求助30
7秒前
xzy发布了新的文献求助20
8秒前
Linanana完成签到,获得积分10
8秒前
8秒前
贾舒涵发布了新的文献求助10
8秒前
Sunrise完成签到,获得积分10
9秒前
HH完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759