已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Confidence-Induced Granular Partial Label Feature Selection via Dependency and Similarity

计算机科学 选择(遗传算法) 依赖关系(UML) 人工智能 特征选择 相似性(几何) 模式识别(心理学) 特征(语言学) 多标签分类 数据挖掘 图像(数学) 哲学 语言学
作者
Wenbin Qian,Yihui Li,Qianzhi Ye,Shuyin Xia,Jintao Huang,Weiping Ding
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5797-5810 被引量:2
标识
DOI:10.1109/tkde.2024.3405489
摘要

Partial label learning (PLL) tackles scenarios where the unique ground-truth label of each sample is concealed within a candidate label set. Dimensionality reduction, considering labeling confidence estimation, has become a promising strategy to enhance the generalization performance of PLL models. However, current studies achieve dimensionality reduction, often relying on kNN-based labeling confidence estimation or disregarding potential labeling information. To address this issue, this paper proposes a novel Confidence-induced granular Partial label feature selection method using Dependency and Similarity (CPDS), which consists of two phases: Labeling Confidence Estimation (LCE) and Feature Selection (FS). For LCE, through granular ball computing, the feature space's similarity and the label space's correlation between the training data and the granular ball can be fused simultaneously, thereby effectively reconstructing more credible labeling confidence from candidate labels with more diverse semantic representation information. In the FS stage, by leveraging the LC with more diverse information, the proposed PLL neighborhood decision system further effectively combines feature dependency and label similarity to identify a feature subset with more discriminative capabilities, thereby achieving better performance for classification tasks. Among them, feature dependency effectively utilizes the dependency between neighborhoods and equivalence relations, while label similarity fully exploits the similarity between each sample and its neighbors. Extensive experiments show that CPDS significantly outperforms the compared approaches in most cases on nine controlled UCI datasets and five real-world datasets, demonstrating the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyjsunye完成签到 ,获得积分10
7秒前
8秒前
缓慢凝梦发布了新的文献求助10
14秒前
大帅比完成签到 ,获得积分10
16秒前
kbcbwb2002完成签到,获得积分0
21秒前
25秒前
嘟呜发布了新的文献求助10
29秒前
赘婿应助zcg采纳,获得10
30秒前
gggghhhh完成签到 ,获得积分10
31秒前
Xx完成签到 ,获得积分10
31秒前
31秒前
香蕉觅云应助yaooo采纳,获得10
32秒前
方法完成签到,获得积分10
35秒前
36秒前
37秒前
37秒前
仰勒完成签到 ,获得积分10
37秒前
40秒前
wz应助deardorff采纳,获得10
41秒前
暗中讨饭发布了新的文献求助10
43秒前
zcg发布了新的文献求助10
46秒前
47秒前
优秀的晓丝完成签到 ,获得积分20
47秒前
呆萌的心情完成签到,获得积分10
48秒前
48秒前
嘟呜完成签到,获得积分10
49秒前
暗中讨饭完成签到,获得积分10
51秒前
www完成签到,获得积分10
57秒前
58秒前
深情安青应助科研通管家采纳,获得10
58秒前
小蘑菇应助科研通管家采纳,获得10
58秒前
1分钟前
虚心的淇完成签到 ,获得积分10
1分钟前
1分钟前
Yang发布了新的文献求助10
1分钟前
西柚完成签到,获得积分10
1分钟前
1分钟前
D1fficulty完成签到,获得积分10
1分钟前
执念完成签到 ,获得积分10
1分钟前
deardorff完成签到,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
The recovery-stress questionnaires : user manual 600
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5854852
求助须知:如何正确求助?哪些是违规求助? 6301084
关于积分的说明 15632635
捐赠科研通 4969994
什么是DOI,文献DOI怎么找? 2680218
邀请新用户注册赠送积分活动 1624232
关于科研通互助平台的介绍 1581003