Trade-In and Trade-Old-for-Remanufactured in Closed-Loop Supply Chain Under Different Power Structures and Government Subsidy

补贴 供应链 业务 政府(语言学) 功率(物理) 产业组织 国际贸易 经济 市场经济 营销 语言学 哲学 物理 量子力学
作者
Kailing Liu,LI Quan-xi,Jinda Liu,Yi Li
出处
期刊:SAGE Open [SAGE]
卷期号:14 (2)
标识
DOI:10.1177/21582440241251474
摘要

Trade-in (TON) and trade-old-for-remanufactured (TOR) programs are commonly used to boost consumer demand and recycle old products, and can generate significant economic benefits from disassembling or reusing old products. However, the influence of channel structures on the TON and TOR optimal decisions of closed-loop supply chains (CLSCs) is rarely discussed. To explore the impact of the implementation of the TOR program on the optimal pricing and demand strategy, enterprise profit, environment, and social welfare when the enterprise has applied the TON program, we develop four models with different power structures and market decisions to maximize enterprise profits based on consumer utility and the Stackelberg game: (1) manufacturer-led model with TON (Model M); (2) retailer-led model with TON (Model R); (3) manufacturer-led model with TON and TOR (Model TM); (4) retailer-led model with TON and TOR (Model TR). The manufacturer-led models may benefit consumers more and stimulate the replacement consumers’ demand for TON and TOR programs. Both TON and TOR demand for the Model TM are considerable. However, when the retailer is in the driver’s seat, the retailer can profit more due to government subsidies for the TOR programs. Our analysis provides insights into the choice of corporate power structures, reducing environmental impacts and improving social welfare. This paper studies for the first time the influence of different power structures and government subsidies on TON and TOR programs in CLSCs. Future research could consider the impact of old products quality or multi-period models on TON and TOR programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾不可发布了新的文献求助10
刚刚
英俊梦槐发布了新的文献求助30
刚刚
Xu完成签到,获得积分10
1秒前
1秒前
秀丽千山完成签到,获得积分10
1秒前
2秒前
3秒前
哈哈哈哈完成签到,获得积分10
3秒前
沧海泪发布了新的文献求助10
4秒前
小胡先森应助凤凰山采纳,获得10
4秒前
一一完成签到,获得积分10
4秒前
惠惠发布了新的文献求助10
4秒前
shotgod完成签到,获得积分20
5秒前
科研通AI5应助蕾子采纳,获得10
5秒前
happy杨完成签到 ,获得积分10
5秒前
lichaoyes发布了新的文献求助10
5秒前
5秒前
Owen应助通~采纳,获得10
5秒前
封闭货车发布了新的文献求助10
6秒前
6秒前
www发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
shotgod发布了新的文献求助10
8秒前
ling玲完成签到,获得积分10
8秒前
奔奔发布了新的文献求助10
8秒前
SweepingMonk应助虚心盼晴采纳,获得10
9秒前
10秒前
汉堡包应助XXF采纳,获得10
10秒前
wzh完成签到,获得积分10
10秒前
海底落日完成签到,获得积分20
10秒前
11秒前
科研通AI5应助123采纳,获得30
11秒前
烟花应助pi采纳,获得10
12秒前
汉堡包应助小木木壮采纳,获得10
12秒前
12秒前
yl发布了新的文献求助30
12秒前
菲菲呀发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794