A synchronous multi-agent reinforcement learning framework for UVMS grasping

强化学习 钢筋 计算机科学 纳米技术 人工智能 工程类 材料科学 结构工程
作者
Yanhu Chen,Zhangpeng Tu,Suohang Zhang,Jifei Zhou,Canjun Yang
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:307: 118155-118155
标识
DOI:10.1016/j.oceaneng.2024.118155
摘要

The lightweight design of underwater vehicle-manipulator systems (UVMS) enhances task flexibility and adaptability but also adds complexity to controller design. With the lightweight underwater vehicle, the underwater manipulator accounts for a larger proportion of the total weight. The dynamic coupling between the underwater manipulator and the underwater vehicle becomes more pronounced, resulting in reduced accuracy in end-effector operations. Recent advancements in artificial intelligence offer a potential solution. In this paper, we propose a multi-agent reinforcement learning framework for UVMS control. Two agents are trained to control the underwater manipulator and vehicle, respectively, in order to address the challenges caused by dynamic coupling. The actor–critic network is employed for both agents based on the Proximal Policy Optimization (PPO) algorithm. A synchronous training method for multi-agents is embedded to improve training performance. Simulation results demonstrate that the proposed method achieves a higher success rate of 95% in object-grasping experiments compared to both the single-agent learning method and the asynchronous training method. Furthermore, strategies aimed at bridging the gap between simulation and real-world environments facilitate successful grasping by the physical UVMS, even though there is a decrease in the success rate during pool experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心市民小红花应助丢丢采纳,获得10
1秒前
grumpysquirel完成签到,获得积分10
1秒前
啦啦啦发布了新的文献求助10
1秒前
1秒前
道友且慢发布了新的文献求助20
2秒前
天竹子发布了新的文献求助10
2秒前
Longfenzhong完成签到,获得积分10
3秒前
江维维豆奶完成签到 ,获得积分10
5秒前
菜鸟完成签到,获得积分10
6秒前
孳孳为善6387完成签到,获得积分10
7秒前
酷波er应助庾稀采纳,获得10
7秒前
jihenyouai0213完成签到,获得积分10
8秒前
朴实山兰完成签到,获得积分10
10秒前
小蘑菇应助YZF采纳,获得10
13秒前
蓝天白云发布了新的文献求助10
13秒前
自然的士晋完成签到,获得积分20
15秒前
狸狸完成签到,获得积分20
17秒前
JamesPei应助吃猫的鱼采纳,获得10
17秒前
bxyyy应助虚幻龙猫采纳,获得10
19秒前
20秒前
Akim应助天竹子采纳,获得10
21秒前
包容秋荷发布了新的文献求助10
22秒前
无花果应助LUK_采纳,获得10
23秒前
慕青应助Bella采纳,获得30
23秒前
24秒前
科研小学生完成签到,获得积分10
24秒前
肚皮完成签到 ,获得积分10
25秒前
吭哧吭哧完成签到,获得积分10
26秒前
<小天才>完成签到,获得积分10
26秒前
天天快乐应助YZF采纳,获得10
26秒前
菜鸟关注了科研通微信公众号
26秒前
27秒前
28秒前
28秒前
潇湘夜雨关注了科研通微信公众号
30秒前
超超的仔仔月完成签到,获得积分10
30秒前
30秒前
tmobiusx发布了新的文献求助10
31秒前
556发布了新的文献求助10
32秒前
科研顺利完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019