已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting individual thermal preferences in an office: Assessing the performance of mixed-effects models

热舒适性 暖通空调 预测建模 对比度(视觉) 计算机科学 领域(数学) 工程类 模拟 统计 空调 机器学习 数学 人工智能 气象学 地理 纯数学 机械工程
作者
Quinten Carton,Jan Kloppenborg Møller,Matteo Favero,Davide Calı̀,Jakub Kolařík,Hilde Breesch
出处
期刊:Building and Environment [Elsevier BV]
卷期号:261: 111751-111751
标识
DOI:10.1016/j.buildenv.2024.111751
摘要

Multiple studies suggested that existing thermal comfort models inadequately predict occupants' individual thermal preferences. Personalised comfort models offer an alternative to conventional comfort models aiming to forecast individual's thermal preference. Implementation of these personalised models in occupant-centric control of heating, ventilation, and air-conditioning (HVAC) systems can enhance their performance. A promising technique for personalised comfort modelling is mixed-effects (ME) modelling. A ME model accounts for fixed effects, representing the trends in the general sample, and for random effects, representing variations of specific clusters in the data. In contrast to fixed-effects (FE) models, ME models can capture individual differences. However, its effectiveness in predicting occupants' thermal preferences based on field measurement data, as well as the influence of variations in ME models on prediction accuracy, remains to be thoroughly investigated. This study aims to assess the prediction accuracy of ME models in contrast to FE models using field measurement data, including thermal preference votes from 30 unique occupants. The prediction performance was evaluated across three testing scenarios, each representing a different application of the models. Furthermore, two random effect structures were tested for the ME model: an intercept-only model and an intercept and slope model. The results show that ME models, in comparison to FE models, achieve an improved prediction performance of 8.0 % on average and up to 28.4 % for individual occupants. Moreover, the addition of a random slope to the ME resulted in deteriorated predictions. Finally, occupants' individual variations were determined with an uncertainty of 6 % after 20 observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
awa完成签到,获得积分20
4秒前
Xieyusen发布了新的文献求助10
5秒前
momi完成签到 ,获得积分10
5秒前
Cheng发布了新的文献求助10
9秒前
泥嚎应助小卡采纳,获得10
9秒前
舒芙蕾完成签到,获得积分10
10秒前
FashionBoy应助朴实的小萱采纳,获得10
13秒前
小蘑菇应助Cheng采纳,获得10
15秒前
无幻完成签到 ,获得积分10
16秒前
儒雅香彤完成签到 ,获得积分10
16秒前
自觉凌蝶完成签到 ,获得积分10
17秒前
17秒前
不知道起啥名字完成签到 ,获得积分10
17秒前
清脆泥猴桃完成签到,获得积分10
19秒前
背后的傥完成签到,获得积分10
19秒前
20秒前
何东浩发布了新的文献求助10
20秒前
胡添傲发布了新的文献求助10
24秒前
Hshi完成签到 ,获得积分10
25秒前
衣吾余完成签到,获得积分10
28秒前
Wilddeer完成签到 ,获得积分10
28秒前
28秒前
科研通AI2S应助fb12000采纳,获得10
30秒前
30秒前
蜜呐发布了新的文献求助10
31秒前
烟花应助搞怪的山水采纳,获得10
31秒前
coolkid完成签到,获得积分0
32秒前
菠萝冰棒完成签到 ,获得积分10
32秒前
lx发布了新的文献求助10
33秒前
耶格尔完成签到 ,获得积分10
34秒前
Spark发布了新的文献求助10
35秒前
小耿完成签到 ,获得积分10
36秒前
超人完成签到 ,获得积分10
37秒前
37秒前
fb12000完成签到,获得积分10
39秒前
小虎应助蜜呐采纳,获得10
40秒前
Jello完成签到,获得积分10
42秒前
hihi完成签到,获得积分10
43秒前
清爽的傲易完成签到 ,获得积分10
48秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510745
关于积分的说明 11154993
捐赠科研通 3245194
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168