Predicting individual thermal preferences in an office: Assessing the performance of mixed-effects models

热舒适性 暖通空调 预测建模 对比度(视觉) 计算机科学 领域(数学) 工程类 模拟 统计 空调 机器学习 数学 人工智能 气象学 地理 纯数学 机械工程
作者
Quinten Carton,Jan Kloppenborg Møller,Matteo Favero,Davide Calı̀,Jakub Kolařík,Hilde Breesch
出处
期刊:Building and Environment [Elsevier]
卷期号:261: 111751-111751
标识
DOI:10.1016/j.buildenv.2024.111751
摘要

Multiple studies suggested that existing thermal comfort models inadequately predict occupants' individual thermal preferences. Personalised comfort models offer an alternative to conventional comfort models aiming to forecast individual's thermal preference. Implementation of these personalised models in occupant-centric control of heating, ventilation, and air-conditioning (HVAC) systems can enhance their performance. A promising technique for personalised comfort modelling is mixed-effects (ME) modelling. A ME model accounts for fixed effects, representing the trends in the general sample, and for random effects, representing variations of specific clusters in the data. In contrast to fixed-effects (FE) models, ME models can capture individual differences. However, its effectiveness in predicting occupants' thermal preferences based on field measurement data, as well as the influence of variations in ME models on prediction accuracy, remains to be thoroughly investigated. This study aims to assess the prediction accuracy of ME models in contrast to FE models using field measurement data, including thermal preference votes from 30 unique occupants. The prediction performance was evaluated across three testing scenarios, each representing a different application of the models. Furthermore, two random effect structures were tested for the ME model: an intercept-only model and an intercept and slope model. The results show that ME models, in comparison to FE models, achieve an improved prediction performance of 8.0 % on average and up to 28.4 % for individual occupants. Moreover, the addition of a random slope to the ME resulted in deteriorated predictions. Finally, occupants' individual variations were determined with an uncertainty of 6 % after 20 observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
单于天宇完成签到,获得积分10
刚刚
刚刚
畅快的南风完成签到,获得积分10
1秒前
猪猪hero完成签到,获得积分10
1秒前
要减肥冰菱完成签到,获得积分10
1秒前
肖静茹完成签到,获得积分20
1秒前
情怀应助啾啾咪咪采纳,获得10
2秒前
奥里给完成签到 ,获得积分10
2秒前
DQ8733完成签到,获得积分10
2秒前
AAAAAAAAAAA发布了新的文献求助10
3秒前
3秒前
鱼与树发布了新的文献求助10
3秒前
sun完成签到,获得积分20
3秒前
lbw完成签到 ,获得积分10
4秒前
领导范儿应助朴素篮球采纳,获得10
4秒前
小刘不笨发布了新的文献求助10
4秒前
4秒前
大方的雪曼完成签到,获得积分10
4秒前
詭詐应助西洲采纳,获得10
4秒前
5秒前
zhangting发布了新的文献求助10
5秒前
玉9989完成签到,获得积分20
5秒前
大方小白发布了新的文献求助10
5秒前
xiaowang完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
轩辕德地发布了新的文献求助10
6秒前
FashionBoy应助chinning采纳,获得10
6秒前
shaohua2011完成签到,获得积分10
6秒前
快乐小白菜应助velpro采纳,获得10
6秒前
舒服的井完成签到,获得积分10
7秒前
脑洞疼应助要减肥冰菱采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
言余完成签到,获得积分10
7秒前
8秒前
寒冷荧荧完成签到,获得积分10
8秒前
Agernon应助细腻白柏采纳,获得10
8秒前
搞怪的人龙完成签到,获得积分10
9秒前
稚初完成签到,获得积分10
9秒前
tommyliu完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678