Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment

医学 无线电技术 神经组阅片室 荟萃分析 放射科 冲程(发动机) 颈动脉疾病 无症状的 内科学 狭窄 神经学 颈动脉内膜切除术 机械工程 精神科 工程类
作者
Sebastiano Vacca,Roberta Scicolone,Ajay Gupta,Bruce Allan Wasserman,Jae Hoon Song,Valentina Nardi,Qi Yang,John C. Benson,Giuseppe Lanzino,Kosmas I. Paraskevas,Jasjit S. Suri,Luca Saba
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:177: 111547-111547 被引量:4
标识
DOI:10.1016/j.ejrad.2024.111547
摘要

Background Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. Materials and methods Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. Results RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. Conclusion In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
闾丘明雪发布了新的文献求助10
1秒前
彭于晏应助大橘为重采纳,获得10
1秒前
xiaogui发布了新的文献求助10
2秒前
2秒前
善学以致用应助gjx采纳,获得10
3秒前
怡然的灯泡完成签到,获得积分10
3秒前
Lucas应助辛勤芷天采纳,获得10
4秒前
Nini发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
汪辉完成签到,获得积分10
5秒前
5秒前
雷羽发布了新的文献求助10
6秒前
灰光呀发布了新的文献求助20
6秒前
li发布了新的文献求助10
6秒前
陈花蕾发布了新的文献求助10
7秒前
8秒前
8秒前
yummydaity发布了新的文献求助10
8秒前
剑来温华发布了新的文献求助10
8秒前
栗栗发布了新的文献求助10
9秒前
alc发布了新的文献求助10
9秒前
urkk完成签到,获得积分10
10秒前
11秒前
11秒前
草莓星发布了新的文献求助10
12秒前
12秒前
闾丘明雪完成签到,获得积分10
12秒前
13秒前
隐形曼青应助阳光青文采纳,获得10
13秒前
斯坦森完成签到 ,获得积分10
13秒前
14秒前
三尺明完成签到 ,获得积分10
14秒前
丘比特应助陈花蕾采纳,获得10
14秒前
Picachu发布了新的文献求助10
15秒前
HUHU发布了新的文献求助20
15秒前
晚星发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005266
求助须知:如何正确求助?哪些是违规求助? 4248997
关于积分的说明 13239331
捐赠科研通 4048538
什么是DOI,文献DOI怎么找? 2214915
邀请新用户注册赠送积分活动 1224854
关于科研通互助平台的介绍 1145260