已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment

医学 无线电技术 神经组阅片室 荟萃分析 放射科 冲程(发动机) 颈动脉疾病 无症状的 内科学 狭窄 神经学 颈动脉内膜切除术 机械工程 精神科 工程类
作者
Sebastiano Vacca,Roberta Scicolone,Ajay Gupta,Bruce Allan Wasserman,Jae Hoon Song,Valentina Nardi,Qi Yang,John C. Benson,Giuseppe Lanzino,Kosmas I. Paraskevas,Jasjit S. Suri,Luca Saba
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111547-111547 被引量:9
标识
DOI:10.1016/j.ejrad.2024.111547
摘要

Background Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. Materials and methods Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. Results RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. Conclusion In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长度2到发布了新的文献求助10
1秒前
斯文奇迹发布了新的文献求助10
1秒前
Orange应助hha采纳,获得10
2秒前
2秒前
尊敬的凝丹完成签到 ,获得积分10
3秒前
刘kk完成签到 ,获得积分10
3秒前
6秒前
白玫瑰发布了新的文献求助10
6秒前
濮阳灵竹完成签到,获得积分10
7秒前
柳树完成签到,获得积分10
10秒前
雅哈完成签到,获得积分10
10秒前
矜天完成签到 ,获得积分10
11秒前
cheqi完成签到 ,获得积分10
11秒前
刘卓发布了新的文献求助10
11秒前
hha完成签到,获得积分20
13秒前
Ziyi_Xu完成签到,获得积分10
13秒前
桐桐应助晴子采纳,获得10
14秒前
David完成签到 ,获得积分10
15秒前
小小小何完成签到 ,获得积分10
15秒前
爱听歌契完成签到 ,获得积分10
17秒前
17秒前
18秒前
得得祎祎完成签到,获得积分10
18秒前
FashionBoy应助刘卓采纳,获得10
18秒前
深情安青应助白玫瑰采纳,获得10
18秒前
NiceSunnyDay完成签到 ,获得积分10
19秒前
yiyi发布了新的文献求助10
19秒前
抚琴祛魅完成签到 ,获得积分10
19秒前
harry发布了新的文献求助10
19秒前
20秒前
老实的斌完成签到,获得积分10
21秒前
欧阳小枫完成签到 ,获得积分10
21秒前
21秒前
23秒前
25秒前
吕健完成签到,获得积分10
25秒前
深情安青应助得得祎祎采纳,获得10
25秒前
hahaha123发布了新的文献求助10
25秒前
十七完成签到 ,获得积分10
26秒前
小象完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759