Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment

医学 无线电技术 神经组阅片室 荟萃分析 放射科 冲程(发动机) 颈动脉疾病 无症状的 内科学 狭窄 神经学 颈动脉内膜切除术 机械工程 精神科 工程类
作者
Sebastiano Vacca,Roberta Scicolone,Ajay Gupta,Bruce Allan Wasserman,Jae Hoon Song,Valentina Nardi,Qi Yang,John C. Benson,Giuseppe Lanzino,Kosmas I. Paraskevas,Jasjit S. Suri,Luca Saba
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111547-111547 被引量:9
标识
DOI:10.1016/j.ejrad.2024.111547
摘要

Background Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. Materials and methods Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. Results RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. Conclusion In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘佳完成签到 ,获得积分10
1秒前
3秒前
4秒前
霜降完成签到 ,获得积分10
5秒前
PDE发布了新的文献求助10
5秒前
7秒前
BJYX完成签到 ,获得积分10
7秒前
8秒前
jjy发布了新的文献求助10
8秒前
9秒前
fm发布了新的文献求助10
9秒前
9秒前
发发发完成签到,获得积分10
9秒前
9秒前
斯文败类应助文静修杰采纳,获得10
9秒前
Akim应助时梦冉采纳,获得10
10秒前
HonestLiang完成签到,获得积分10
10秒前
Dog完成签到,获得积分10
11秒前
浮游应助花开开开采纳,获得10
12秒前
罗莹完成签到 ,获得积分10
13秒前
爆米花应助发发发采纳,获得10
13秒前
幽默的越彬完成签到,获得积分10
14秒前
一个西藏发布了新的文献求助30
14秒前
天真依玉发布了新的文献求助10
14秒前
yls发布了新的文献求助10
15秒前
小蘑菇应助滴滴答答采纳,获得10
15秒前
科目三应助PP213采纳,获得10
16秒前
17秒前
瓜瓜完成签到 ,获得积分10
17秒前
19秒前
20秒前
linn完成签到,获得积分10
20秒前
Katrina完成签到,获得积分10
20秒前
简单的火车完成签到 ,获得积分10
21秒前
22秒前
25秒前
26秒前
28秒前
nnl发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355699
求助须知:如何正确求助?哪些是违规求助? 4487559
关于积分的说明 13970591
捐赠科研通 4388263
什么是DOI,文献DOI怎么找? 2410970
邀请新用户注册赠送积分活动 1403518
关于科研通互助平台的介绍 1377055