Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment

医学 无线电技术 神经组阅片室 荟萃分析 放射科 冲程(发动机) 颈动脉疾病 无症状的 内科学 狭窄 神经学 颈动脉内膜切除术 机械工程 精神科 工程类
作者
Sebastiano Vacca,Roberta Scicolone,Ajay Gupta,Bruce Allan Wasserman,Jae Hoon Song,Valentina Nardi,Qi Yang,John C. Benson,Giuseppe Lanzino,Kosmas I. Paraskevas,Jasjit S. Suri,Luca Saba
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111547-111547 被引量:1
标识
DOI:10.1016/j.ejrad.2024.111547
摘要

Background Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. Materials and methods Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. Results RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. Conclusion In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xianglingliwei完成签到 ,获得积分0
刚刚
坦率傲玉完成签到 ,获得积分10
刚刚
charles发布了新的文献求助30
2秒前
3秒前
4秒前
慕青应助赵峻采纳,获得10
5秒前
hellozijia完成签到,获得积分10
8秒前
Junzhuo Zhou完成签到,获得积分10
8秒前
李健应助Pineapple采纳,获得10
9秒前
666完成签到,获得积分10
10秒前
marui发布了新的文献求助10
10秒前
ZoneY完成签到 ,获得积分10
10秒前
10秒前
EdwardKING发布了新的文献求助10
11秒前
sxm1004完成签到,获得积分10
12秒前
Nitric_Oxide应助鲤鱼不二采纳,获得10
12秒前
13秒前
14秒前
dartrible发布了新的文献求助10
15秒前
OvOlive完成签到,获得积分10
15秒前
烟花应助真是麻烦采纳,获得10
15秒前
dd发布了新的文献求助10
16秒前
Wjh123456完成签到,获得积分10
16秒前
18秒前
感动芷珍发布了新的文献求助30
18秒前
黄金天下完成签到,获得积分10
19秒前
marui完成签到,获得积分10
19秒前
果力成完成签到,获得积分10
20秒前
赵峻发布了新的文献求助10
21秒前
21秒前
多多洛完成签到 ,获得积分20
22秒前
Apple发布了新的文献求助10
24秒前
可可发布了新的文献求助10
26秒前
27秒前
良辰应助冰糖葫芦不加糖采纳,获得10
28秒前
xxx1234完成签到,获得积分10
28秒前
情怀应助小小灯笼采纳,获得10
29秒前
Kncc完成签到 ,获得积分10
30秒前
30秒前
坦率的寻双完成签到,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825