Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment

医学 无线电技术 神经组阅片室 荟萃分析 放射科 冲程(发动机) 颈动脉疾病 无症状的 内科学 狭窄 神经学 颈动脉内膜切除术 机械工程 精神科 工程类
作者
Sebastiano Vacca,Roberta Scicolone,Ajay Gupta,Bruce Allan Wasserman,Jae Hoon Song,Valentina Nardi,Qi Yang,John C. Benson,Giuseppe Lanzino,Kosmas I. Paraskevas,Jasjit S. Suri,Luca Saba
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111547-111547 被引量:1
标识
DOI:10.1016/j.ejrad.2024.111547
摘要

Background Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. Materials and methods Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. Results RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. Conclusion In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
习习发布了新的文献求助10
1秒前
1秒前
wanci应助drizzling采纳,获得10
1秒前
r93527005完成签到,获得积分10
1秒前
2秒前
霸气谷蕊完成签到 ,获得积分10
4秒前
羊羊羊完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI5应助WNL采纳,获得10
5秒前
Xuu完成签到,获得积分10
5秒前
外向的沅发布了新的文献求助10
5秒前
徐慕源发布了新的文献求助10
5秒前
夏哈哈完成签到 ,获得积分10
6秒前
默默海露完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
迷路安阳发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助Jolene66采纳,获得10
8秒前
医路有你完成签到,获得积分10
8秒前
9秒前
科研通AI5应助Sean采纳,获得10
9秒前
9秒前
超帅连虎完成签到,获得积分10
9秒前
皓月千里发布了新的文献求助10
9秒前
Grayball应助包容的剑采纳,获得10
9秒前
深情安青应助寒冷书竹采纳,获得10
10秒前
wbj0722完成签到,获得积分10
10秒前
JIAO完成签到,获得积分10
10秒前
10秒前
11秒前
852应助HopeStar采纳,获得10
11秒前
圆圆发布了新的文献求助30
12秒前
Orange应助Promise采纳,获得10
12秒前
一直发布了新的文献求助20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678