已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment

医学 无线电技术 神经组阅片室 荟萃分析 放射科 冲程(发动机) 颈动脉疾病 无症状的 内科学 狭窄 神经学 颈动脉内膜切除术 机械工程 精神科 工程类
作者
Sebastiano Vacca,Roberta Scicolone,Ajay Gupta,Bruce Allan Wasserman,Jae Hoon Song,Valentina Nardi,Qi Yang,John C. Benson,Giuseppe Lanzino,Kosmas I. Paraskevas,Jasjit S. Suri,Luca Saba
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111547-111547 被引量:9
标识
DOI:10.1016/j.ejrad.2024.111547
摘要

Background Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. Materials and methods Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. Results RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. Conclusion In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从烷烃开始重新生长完成签到,获得积分10
刚刚
隐形曼青应助sujinyu采纳,获得10
刚刚
AnyYuan发布了新的文献求助10
2秒前
Hilda007发布了新的文献求助10
2秒前
Orange应助懒羊羊采纳,获得10
3秒前
傲骨完成签到 ,获得积分10
4秒前
mist完成签到 ,获得积分10
5秒前
6秒前
浪里白条发布了新的文献求助10
6秒前
科研天才完成签到 ,获得积分10
8秒前
9秒前
阿楷发布了新的文献求助10
11秒前
tough_cookie完成签到 ,获得积分10
14秒前
15秒前
16秒前
L1完成签到 ,获得积分10
17秒前
科研通AI6.1应助wodeqiche2007采纳,获得10
17秒前
vincentyang发布了新的文献求助10
18秒前
QinMengyao发布了新的文献求助10
19秒前
19秒前
19秒前
cc完成签到 ,获得积分10
22秒前
22秒前
懒羊羊发布了新的文献求助10
22秒前
Ye完成签到,获得积分10
23秒前
24秒前
24秒前
26秒前
雷雷发布了新的文献求助10
26秒前
科研通AI6.1应助cathe采纳,获得10
30秒前
penghui完成签到,获得积分10
30秒前
脑洞疼应助QUAV采纳,获得10
31秒前
sujinyu发布了新的文献求助10
32秒前
懒羊羊完成签到,获得积分10
34秒前
在水一方应助完美的思菱采纳,获得10
35秒前
Happy完成签到,获得积分10
35秒前
liu发布了新的文献求助10
36秒前
吐丝麵包完成签到 ,获得积分10
40秒前
cathe完成签到,获得积分10
42秒前
JamesPei应助江江江采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787903
求助须知:如何正确求助?哪些是违规求助? 5702431
关于积分的说明 15473009
捐赠科研通 4916130
什么是DOI,文献DOI怎么找? 2646159
邀请新用户注册赠送积分活动 1593838
关于科研通互助平台的介绍 1548165