已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment

医学 无线电技术 神经组阅片室 荟萃分析 放射科 冲程(发动机) 颈动脉疾病 无症状的 内科学 狭窄 神经学 颈动脉内膜切除术 机械工程 精神科 工程类
作者
Sebastiano Vacca,Roberta Scicolone,Ajay Gupta,Bruce Allan Wasserman,Jae Hoon Song,Valentina Nardi,Qi Yang,John C. Benson,Giuseppe Lanzino,Kosmas I. Paraskevas,Jasjit S. Suri,Luca Saba
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:177: 111547-111547 被引量:9
标识
DOI:10.1016/j.ejrad.2024.111547
摘要

Background Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. Materials and methods Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. Results RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. Conclusion In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Unifrog发布了新的文献求助30
1秒前
筱xiao完成签到 ,获得积分10
2秒前
2秒前
欣喜的如冬完成签到 ,获得积分10
3秒前
zpp发布了新的文献求助40
4秒前
hansongluo完成签到 ,获得积分10
4秒前
4秒前
bukeshuo发布了新的文献求助10
5秒前
丘比特应助绘梨衣采纳,获得10
6秒前
8秒前
听风者完成签到 ,获得积分10
8秒前
zxj完成签到 ,获得积分10
9秒前
小马甲应助南北采纳,获得10
9秒前
踏实南瓜胖墩墩完成签到,获得积分20
11秒前
小马甲应助fanfan采纳,获得10
12秒前
12秒前
演化的蛙鱼发布了新的文献求助200
12秒前
xxx完成签到 ,获得积分10
12秒前
orixero应助糊涂的白梦采纳,获得10
12秒前
12秒前
13秒前
juan完成签到 ,获得积分10
13秒前
崽崽发布了新的文献求助10
16秒前
16秒前
充电宝应助qiaojunys采纳,获得10
17秒前
blue发布了新的文献求助20
17秒前
平淡夏云发布了新的文献求助10
17秒前
Hello应助123y采纳,获得10
18秒前
orixero应助程俊扬采纳,获得10
18秒前
20秒前
20秒前
Anffeny完成签到,获得积分10
21秒前
完美世界应助Jiale采纳,获得10
22秒前
星辰大海应助嘿111采纳,获得10
22秒前
cenghao发布了新的文献求助10
23秒前
23秒前
赛赛发布了新的文献求助10
23秒前
归尘发布了新的文献求助10
23秒前
一杯阳光完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644082
求助须知:如何正确求助?哪些是违规求助? 4762848
关于积分的说明 15023478
捐赠科研通 4802306
什么是DOI,文献DOI怎么找? 2567408
邀请新用户注册赠送积分活动 1525124
关于科研通互助平台的介绍 1484620