Intelligent Respiratory Status Monitoring via A 1DCNN-Assisted Microfiber Sensor

超细纤维 呼吸监测 计算机科学 呼吸系统 材料科学 医学 复合材料 内科学
作者
Jiaxin Zhang,Xiufang Wang,Chunlei Jiang,Penghui Dai,Yu Sun,Hongbo Bi
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 19136-19142 被引量:1
标识
DOI:10.1109/jsen.2024.3395285
摘要

Respiration is a crucial parameter for monitoring human health. Traditional respiration sensors are plagued by complex manufacturing procedures, unpleasant wearing, limited accuracy, and the requirement for meticulous alignment. In order to address these issues, we suggest utilising a microfiber sensor that operates on the principle of self-mixing interference. This sensor is designed to detect respiratory vibration signals emanating from the wrist. The sensor comprises a biconical optical fiber heated, stretched, and enclosed within a PDMS (polydimethylsiloxane) layer. The microfiber serves as a sensor component for detecting respiratory vibrations, while the PDMS film enhances the sensing area to enhance the comfort of wearing. The experimental results show that the sensor has a fast response time (3ms), good repeatability (> 30,000 cycles), and very high sensitivity. It successfully detected vibration signals from the wrist across four distinct respiratory states: apnea, shortness of breath, deep breathing, and normal breathing. We created a dataset from the collected signals to train a 1DCNN neural network model. This model demonstrated intelligent monitoring of respiratory status, as evidenced by tests that yielded up to 98% accuracy. As a result, we successfully implemented intelligent monitoring of respiratory states. This study showcases the effectiveness of using 1D convolutional neural network-assisted microfiber sensors for monitoring respiratory status. The findings suggest that these sensors have prospective applications and can provide valuable insights in the healthcare industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Zhy发布了新的文献求助10
3秒前
852应助黄滔采纳,获得30
3秒前
4秒前
4秒前
曾经冷荷发布了新的文献求助10
4秒前
p53完成签到,获得积分10
4秒前
5秒前
one发布了新的文献求助10
6秒前
答不溜关注了科研通微信公众号
7秒前
CodeCraft应助lvwubin采纳,获得30
7秒前
含蓄妖丽发布了新的文献求助10
8秒前
张嘉佳完成签到 ,获得积分10
12秒前
12秒前
科研南完成签到,获得积分10
15秒前
zzl发布了新的文献求助10
17秒前
17秒前
17秒前
完美世界应助含蓄妖丽采纳,获得10
18秒前
20秒前
一路微笑发布了新的文献求助10
20秒前
yingrui发布了新的文献求助10
21秒前
锦鲤发布了新的文献求助10
21秒前
归尘应助否认冶游史采纳,获得10
23秒前
柯一一应助将将采纳,获得10
23秒前
24秒前
CCC完成签到 ,获得积分10
26秒前
llll应助yingrui采纳,获得10
27秒前
27秒前
小木同学完成签到,获得积分10
27秒前
30秒前
Akim应助舒心的秋荷采纳,获得10
30秒前
31秒前
Rockyhee22发布了新的文献求助10
32秒前
33秒前
丰知然应助懒羊羊采纳,获得10
34秒前
爱听歌契发布了新的文献求助10
35秒前
高贵怀蕾发布了新的文献求助30
35秒前
猪猪hero发布了新的文献求助10
39秒前
42秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416658
求助须知:如何正确求助?哪些是违规求助? 3018516
关于积分的说明 8884356
捐赠科研通 2705781
什么是DOI,文献DOI怎么找? 1483926
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681022