亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Partial multi-label feature selection via low-rank and sparse factorization with manifold learning

模式识别(心理学) 特征选择 人工智能 秩(图论) 选择(遗传算法) 因式分解 计算机科学 数学 非线性降维 特征(语言学) 歧管(流体力学) 机器学习 组合数学 降维 算法 工程类 哲学 机械工程 语言学
作者
Zhenzhen Sun,Zexiang Chen,Jinghua Liu,Yewang Chen,Yuanlong Yu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:296: 111899-111899 被引量:1
标识
DOI:10.1016/j.knosys.2024.111899
摘要

Feature selection is a commonly utilized methodology in multi-label learning (MLL) for tackling the challenge of high-dimensional data. Accurate annotation of relevant labels is crucial for successful multi-label feature selection (MFS). Nevertheless, multi-label datasets frequently consist of ground-truth and noisy labels in real-world applications, giving rise to the partial multi-label learning (PML) problem. The inclusion of noisy labels complicates the task of conventional MFS methods in accurately identifying the optimal features subset in such datasets. To tackle this issue, we propose a novel partial multi-label feature selection method with low-rank sparse factorization and manifold learning, called PMFS-LRS. Specifically, we first decompose the candidate label matrix into two distinct components: a low-rank matrix referring to ground-truth labels and a sparse matrix referring to noisy labels. This decomposition allows PMFS-LRS to effectively distinguish noise labels from ground-truth labels, thereby mitigating the impact of noisy data. Then, the local label correlations are explored using a manifold learning framework to improve the label disambiguation performance. Finally, a l2,1-norm regularization is integrated into the objective function to facilitate effective feature selection. Comprehensive experiments conducted on both real-world and synthetic PML datasets demonstrate that PMFS-LRS is superior to several existing state-of-the-art MFS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fletcherschwann完成签到,获得积分10
2秒前
3秒前
8秒前
9秒前
12秒前
14秒前
tan发布了新的文献求助10
14秒前
16秒前
清脆元冬发布了新的文献求助10
17秒前
FashionBoy应助闫恒采纳,获得10
17秒前
明理夏波完成签到,获得积分10
19秒前
24秒前
27秒前
明理夏波发布了新的文献求助10
29秒前
33秒前
风趣雅青发布了新的文献求助30
35秒前
酷波er应助科研通管家采纳,获得30
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
38秒前
Criminology34应助科研通管家采纳,获得10
38秒前
Jasper应助香菜芋头采纳,获得10
38秒前
LuoLuo完成签到,获得积分10
42秒前
张匀继完成签到,获得积分10
43秒前
50秒前
丘比特应助西内!卡Q因采纳,获得10
53秒前
58秒前
59秒前
清脆元冬完成签到,获得积分20
1分钟前
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助Zola采纳,获得10
1分钟前
hankongli完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
伊萨卡发布了新的文献求助30
1分钟前
1分钟前
科研通AI6应助霜降采纳,获得10
1分钟前
chenchen完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194849
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447015
邀请新用户注册赠送积分活动 1438318
关于科研通互助平台的介绍 1415157