Partial multi-label feature selection via low-rank and sparse factorization with manifold learning

模式识别(心理学) 特征选择 人工智能 秩(图论) 选择(遗传算法) 因式分解 计算机科学 数学 非线性降维 特征(语言学) 歧管(流体力学) 机器学习 组合数学 降维 算法 工程类 哲学 机械工程 语言学
作者
Zhenzhen Sun,Zexiang Chen,Jinghua Liu,Yewang Chen,Yuanlong Yu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:296: 111899-111899 被引量:1
标识
DOI:10.1016/j.knosys.2024.111899
摘要

Feature selection is a commonly utilized methodology in multi-label learning (MLL) for tackling the challenge of high-dimensional data. Accurate annotation of relevant labels is crucial for successful multi-label feature selection (MFS). Nevertheless, multi-label datasets frequently consist of ground-truth and noisy labels in real-world applications, giving rise to the partial multi-label learning (PML) problem. The inclusion of noisy labels complicates the task of conventional MFS methods in accurately identifying the optimal features subset in such datasets. To tackle this issue, we propose a novel partial multi-label feature selection method with low-rank sparse factorization and manifold learning, called PMFS-LRS. Specifically, we first decompose the candidate label matrix into two distinct components: a low-rank matrix referring to ground-truth labels and a sparse matrix referring to noisy labels. This decomposition allows PMFS-LRS to effectively distinguish noise labels from ground-truth labels, thereby mitigating the impact of noisy data. Then, the local label correlations are explored using a manifold learning framework to improve the label disambiguation performance. Finally, a l2,1-norm regularization is integrated into the objective function to facilitate effective feature selection. Comprehensive experiments conducted on both real-world and synthetic PML datasets demonstrate that PMFS-LRS is superior to several existing state-of-the-art MFS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助落寞臻采纳,获得10
2秒前
bbdd2334发布了新的文献求助10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
dinghaifeng应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
温冰雪应助科研通管家采纳,获得10
4秒前
4秒前
9秒前
10秒前
10秒前
卤蛋长不高完成签到 ,获得积分10
11秒前
13秒前
13秒前
14秒前
17秒前
乐乐发布了新的文献求助10
19秒前
如意真发布了新的文献求助10
19秒前
blueboom完成签到 ,获得积分10
21秒前
彭于晏应助kaisen采纳,获得10
21秒前
科目三应助钟沐晨采纳,获得10
23秒前
24秒前
淡然冬灵发布了新的文献求助10
24秒前
24秒前
木林森林木完成签到 ,获得积分10
28秒前
如意真完成签到,获得积分10
29秒前
zzcres发布了新的文献求助10
29秒前
香蕉觅云应助bbdd2334采纳,获得10
29秒前
上官若男应助fxy采纳,获得10
30秒前
安陌煜发布了新的文献求助10
31秒前
33秒前
大个应助志灰灰采纳,获得10
33秒前
33秒前
lizike完成签到,获得积分10
34秒前
我我我完成签到,获得积分10
34秒前
钟沐晨发布了新的文献求助10
36秒前
量子星尘发布了新的文献求助10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541