材料科学
阴极
电解质
兴奋剂
离子
功率密度
电压
锂(药物)
相(物质)
导线
原子层沉积
高压
光电子学
化学物理
功率(物理)
纳米技术
薄膜
化学
电气工程
电极
复合材料
热力学
物理化学
物理
有机化学
工程类
医学
内分泌学
作者
Yunan Tian,Yuyu Li,Huasen Shen,Xiangxin Cheng,Yiming Cheng,Wen Zhang,Peng Yu,Zehui Yang,Lixing Xue,Yameng Fan,Lingfei Zhao,Jian Peng,Jiazhao Wang,Zhaohuai Li,Ming Xie,Huan Liu,Shi Xue Dou
标识
DOI:10.1002/advs.202402380
摘要
Abstract Simultaneously achieving high‐energy‐density and high‐power‐density is a crucial yet challenging objective in the pursuit of commercialized power batteries. In this study, atomic layer deposition (ALD) is employed combined with a coordinated thermal treatment strategy to construct a densely packed, electron‐ion dual conductor (EIC) protective coating on the surface of commercial LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523) cathode material, further enhanced by gradient Al doping (Al@EIC‐NCM523). The ultra‐thin EIC effectively suppresses side reactions, thereby enhancing the stability of the cathode‐electrolyte interphase (CEI) at high‐voltages. The EIC's dual conduction capability provides a potent driving force for Li + transport at the interface, promoting the formation of rapid ion deintercalation pathways within the Al@EIC‐NCM523 bulk phase. Moreover, the strategic gradient doping of Al serves to anchor the atomic spacing of Ni and O within the structure of Al@EIC‐NCM523, curbing irreversible phase transitions at high‐voltages and preserving the integrity of its layered structure. Remarkably, Al@EIC‐NCM523 displays an unprecedented rate capability (114.7 mAh g −1 at 20 C), and a sustained cycling performance (capacity retention of 74.72% after 800 cycles at 10 C) at 4.6 V. These findings demonstrate that the proposed EIC and doping strategy holds a significant promise for developing high‐energy‐density and high‐power‐density lithium‐ion batteries (LIBs).
科研通智能强力驱动
Strongly Powered by AbleSci AI