A New ECT Image Reconstruction Algorithm Based on Vision Transformer (ViT)

计算机科学 变压器 人工智能 计算机视觉 算法 电气工程 电压 工程类
作者
Xinjie Wu,Si-Kai Xu,Mingyu Gao,Yandong Liu,Shi-Xing Liu,Hua Yan,Yan Wang
出处
期刊:Flow Measurement and Instrumentation [Elsevier BV]
卷期号:: 102611-102611 被引量:1
标识
DOI:10.1016/j.flowmeasinst.2024.102611
摘要

Aiming at the problem of low accuracy of ECT image reconstruction, this paper proposes an ECT image reconstruction algorithm based on Vision Transformer (ViT). ViT is a method that applies the Transformer to the field of image classification, which is characterized by strong long-distance dependency learning ability and strong multi-modal fusion ability compared to CNN. This paper fully utilizes the characteristics of ViT to transform the image reconstruction process of ECT into the classification process of ViT. Here, a method is proposed to use the object field distribution as the image classification label. This method converts a two-dimensional image of the object field distribution into a one-dimensional vector, which is the label vector of the image classification. These vectors and their corresponding reconstructed images obtained by the Landweber algorithm form the sample set of ViT. Extracting a large number of flow pattern samples with various shapes and distributions through COMSOL is used as a training set. After training ViT, this network model is used to infer the labels of the predicted flow patterns. After post-processing this label, the corresponding reconstructed image can be obtained. Finally, simulation experiments are conducted, and the experiments results show that the image errors and correlation coefficients of the reconstructed images obtained through the algorithm in this paper are better than those of Tikhonov algorithm, Landweber algorithm and Long Short-Term Memory Network(LSTM). And this algorithm has better resistance to noise interference than Tikhonov algorithm, Landweber algorithm, and LSTM. This also provides a new approach and means for ECT image reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李明完成签到 ,获得积分10
1秒前
科研通AI6应助绿颜色采纳,获得10
1秒前
1秒前
野性的曼香完成签到 ,获得积分10
1秒前
领导范儿应助Jimmy Ko采纳,获得10
1秒前
共渡完成签到,获得积分10
2秒前
2秒前
可爱的函函应助一二采纳,获得10
4秒前
苏紫梗桔发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
aaaaa完成签到,获得积分10
7秒前
不再选择完成签到,获得积分10
9秒前
cheese完成签到,获得积分10
12秒前
12秒前
orixero应助可不可以采纳,获得10
14秒前
浮游应助璆璆的虾采纳,获得10
15秒前
云蓝完成签到 ,获得积分10
20秒前
高贵的水杯完成签到,获得积分10
20秒前
wenjuan给wenjuan的求助进行了留言
22秒前
小二郎应助lyh采纳,获得10
22秒前
26秒前
26秒前
小程完成签到 ,获得积分10
28秒前
29秒前
30秒前
30秒前
hh完成签到 ,获得积分20
30秒前
史杜旦腾发布了新的文献求助10
30秒前
33秒前
田様应助机灵的乘云采纳,获得30
33秒前
xcgh给玉面手雷王的求助进行了留言
34秒前
34秒前
FashionBoy应助MakiseKurisu采纳,获得10
34秒前
36秒前
37秒前
colormeblue完成签到 ,获得积分10
37秒前
38秒前
39秒前
jy发布了新的文献求助10
40秒前
ppxx完成签到,获得积分10
42秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225839
求助须知:如何正确求助?哪些是违规求助? 4397471
关于积分的说明 13686412
捐赠科研通 4261957
什么是DOI,文献DOI怎么找? 2338829
邀请新用户注册赠送积分活动 1336245
关于科研通互助平台的介绍 1292194