A New ECT Image Reconstruction Algorithm Based on Vision Transformer (ViT)

计算机科学 变压器 人工智能 计算机视觉 算法 电气工程 电压 工程类
作者
Xinjie Wu,Si-Kai Xu,Mingyu Gao,Yandong Liu,Shi-Xing Liu,Hua Yan,Yan Wang
出处
期刊:Flow Measurement and Instrumentation [Elsevier BV]
卷期号:: 102611-102611 被引量:1
标识
DOI:10.1016/j.flowmeasinst.2024.102611
摘要

Aiming at the problem of low accuracy of ECT image reconstruction, this paper proposes an ECT image reconstruction algorithm based on Vision Transformer (ViT). ViT is a method that applies the Transformer to the field of image classification, which is characterized by strong long-distance dependency learning ability and strong multi-modal fusion ability compared to CNN. This paper fully utilizes the characteristics of ViT to transform the image reconstruction process of ECT into the classification process of ViT. Here, a method is proposed to use the object field distribution as the image classification label. This method converts a two-dimensional image of the object field distribution into a one-dimensional vector, which is the label vector of the image classification. These vectors and their corresponding reconstructed images obtained by the Landweber algorithm form the sample set of ViT. Extracting a large number of flow pattern samples with various shapes and distributions through COMSOL is used as a training set. After training ViT, this network model is used to infer the labels of the predicted flow patterns. After post-processing this label, the corresponding reconstructed image can be obtained. Finally, simulation experiments are conducted, and the experiments results show that the image errors and correlation coefficients of the reconstructed images obtained through the algorithm in this paper are better than those of Tikhonov algorithm, Landweber algorithm and Long Short-Term Memory Network(LSTM). And this algorithm has better resistance to noise interference than Tikhonov algorithm, Landweber algorithm, and LSTM. This also provides a new approach and means for ECT image reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yyy发布了新的文献求助10
1秒前
思源应助Muhammad采纳,获得10
1秒前
2秒前
ED应助啾啾啾采纳,获得20
2秒前
领导范儿应助啾啾啾采纳,获得10
2秒前
万松辉完成签到,获得积分10
2秒前
yyy发布了新的文献求助10
2秒前
3秒前
yyy发布了新的文献求助10
3秒前
yyy发布了新的文献求助10
3秒前
yyy发布了新的文献求助10
3秒前
yyy发布了新的文献求助10
3秒前
yyy发布了新的文献求助10
3秒前
刘林美完成签到,获得积分20
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
yyy发布了新的文献求助10
5秒前
yyy发布了新的文献求助10
5秒前
yyy发布了新的文献求助10
5秒前
yyy发布了新的文献求助10
5秒前
yyy发布了新的文献求助10
5秒前
yyy发布了新的文献求助10
5秒前
yyy发布了新的文献求助10
5秒前
yyy发布了新的文献求助30
5秒前
yyy发布了新的文献求助10
5秒前
yyy发布了新的文献求助10
5秒前
yyy发布了新的文献求助30
5秒前
在水一方应助小小阿杰采纳,获得10
6秒前
纸张猫猫关注了科研通微信公众号
6秒前
7秒前
稳重的安萱完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176