A New ECT Image Reconstruction Algorithm Based on Vision Transformer (ViT)

计算机科学 变压器 人工智能 计算机视觉 算法 电气工程 电压 工程类
作者
Xinjie Wu,Si-Kai Xu,Mingyu Gao,Yandong Liu,Shi-Xing Liu,Hua Yan,Yan Wang
出处
期刊:Flow Measurement and Instrumentation [Elsevier]
卷期号:: 102611-102611 被引量:1
标识
DOI:10.1016/j.flowmeasinst.2024.102611
摘要

Aiming at the problem of low accuracy of ECT image reconstruction, this paper proposes an ECT image reconstruction algorithm based on Vision Transformer (ViT). ViT is a method that applies the Transformer to the field of image classification, which is characterized by strong long-distance dependency learning ability and strong multi-modal fusion ability compared to CNN. This paper fully utilizes the characteristics of ViT to transform the image reconstruction process of ECT into the classification process of ViT. Here, a method is proposed to use the object field distribution as the image classification label. This method converts a two-dimensional image of the object field distribution into a one-dimensional vector, which is the label vector of the image classification. These vectors and their corresponding reconstructed images obtained by the Landweber algorithm form the sample set of ViT. Extracting a large number of flow pattern samples with various shapes and distributions through COMSOL is used as a training set. After training ViT, this network model is used to infer the labels of the predicted flow patterns. After post-processing this label, the corresponding reconstructed image can be obtained. Finally, simulation experiments are conducted, and the experiments results show that the image errors and correlation coefficients of the reconstructed images obtained through the algorithm in this paper are better than those of Tikhonov algorithm, Landweber algorithm and Long Short-Term Memory Network(LSTM). And this algorithm has better resistance to noise interference than Tikhonov algorithm, Landweber algorithm, and LSTM. This also provides a new approach and means for ECT image reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
今后应助陈文礼采纳,获得10
1秒前
打打应助完美的皮卡丘采纳,获得10
1秒前
Ava应助孙欣阳采纳,获得10
3秒前
星辰大海应助禅心采纳,获得10
3秒前
3秒前
丰富画笔发布了新的文献求助10
3秒前
刘亦平大美女完成签到,获得积分10
4秒前
珍珠红茶完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
英吉利25发布了新的文献求助10
5秒前
zhou国兵完成签到,获得积分20
5秒前
5秒前
我是老大应助Sunxf采纳,获得10
6秒前
Akim应助王壮壮采纳,获得10
6秒前
仙林AK47完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
沉默金鑫发布了新的文献求助10
8秒前
ding应助体贴旭尧采纳,获得10
8秒前
zjkzh完成签到,获得积分10
8秒前
打打应助ZhangQ采纳,获得10
8秒前
8秒前
浪迹完成签到,获得积分10
8秒前
xyg发布了新的文献求助10
8秒前
852应助黄河鲤鱼儿采纳,获得10
9秒前
小蘑菇应助张兰兰采纳,获得10
9秒前
9秒前
10秒前
10秒前
小马甲应助QYPANG采纳,获得10
10秒前
科研不通发布了新的文献求助10
10秒前
认真婴发布了新的文献求助10
10秒前
大脑停工发布了新的文献求助10
10秒前
桐桐应助欣慰的妙菱采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718886
求助须知:如何正确求助?哪些是违规求助? 5254421
关于积分的说明 15287351
捐赠科研通 4868927
什么是DOI,文献DOI怎么找? 2614473
邀请新用户注册赠送积分活动 1564399
关于科研通互助平台的介绍 1521791