A New ECT Image Reconstruction Algorithm Based on Vision Transformer (ViT)

计算机科学 变压器 人工智能 计算机视觉 算法 电气工程 电压 工程类
作者
Xinjie Wu,Si-Kai Xu,Mingyu Gao,Yandong Liu,Shi-Xing Liu,Hua Yan,Yan Wang
出处
期刊:Flow Measurement and Instrumentation [Elsevier]
卷期号:: 102611-102611 被引量:1
标识
DOI:10.1016/j.flowmeasinst.2024.102611
摘要

Aiming at the problem of low accuracy of ECT image reconstruction, this paper proposes an ECT image reconstruction algorithm based on Vision Transformer (ViT). ViT is a method that applies the Transformer to the field of image classification, which is characterized by strong long-distance dependency learning ability and strong multi-modal fusion ability compared to CNN. This paper fully utilizes the characteristics of ViT to transform the image reconstruction process of ECT into the classification process of ViT. Here, a method is proposed to use the object field distribution as the image classification label. This method converts a two-dimensional image of the object field distribution into a one-dimensional vector, which is the label vector of the image classification. These vectors and their corresponding reconstructed images obtained by the Landweber algorithm form the sample set of ViT. Extracting a large number of flow pattern samples with various shapes and distributions through COMSOL is used as a training set. After training ViT, this network model is used to infer the labels of the predicted flow patterns. After post-processing this label, the corresponding reconstructed image can be obtained. Finally, simulation experiments are conducted, and the experiments results show that the image errors and correlation coefficients of the reconstructed images obtained through the algorithm in this paper are better than those of Tikhonov algorithm, Landweber algorithm and Long Short-Term Memory Network(LSTM). And this algorithm has better resistance to noise interference than Tikhonov algorithm, Landweber algorithm, and LSTM. This also provides a new approach and means for ECT image reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
刚刚
杳鸢应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
Henry应助科研通管家采纳,获得200
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
领导范儿应助you采纳,获得10
1秒前
3秒前
4秒前
田様应助加油呀采纳,获得10
5秒前
6秒前
巴萨老板发布了新的文献求助10
6秒前
橙红拉尼娜完成签到,获得积分10
7秒前
9秒前
10秒前
cloud发布了新的文献求助10
10秒前
情怀应助不远采纳,获得10
11秒前
雪霁初晴完成签到,获得积分10
11秒前
SEAMUS发布了新的文献求助10
13秒前
和谐听莲发布了新的文献求助10
13秒前
华hgger完成签到,获得积分20
14秒前
咕噜咕噜完成签到,获得积分20
15秒前
16秒前
18秒前
Minna应助SEAMUS采纳,获得10
18秒前
18秒前
研友_n0QYAZ发布了新的文献求助10
18秒前
19秒前
猫咪老师应助斯文谷秋采纳,获得30
21秒前
21秒前
蒋一丹完成签到,获得积分20
22秒前
莎莎发布了新的文献求助30
22秒前
科研通AI2S应助拼搏的春子采纳,获得10
22秒前
不远发布了新的文献求助10
23秒前
SEAMUS完成签到,获得积分20
25秒前
知性的冰棍完成签到,获得积分10
27秒前
科研通AI2S应助加州未雨采纳,获得10
27秒前
科研通AI2S应助欣喜宛亦采纳,获得10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232940
求助须知:如何正确求助?哪些是违规求助? 2879558
关于积分的说明 8212027
捐赠科研通 2547095
什么是DOI,文献DOI怎么找? 1376547
科研通“疑难数据库(出版商)”最低求助积分说明 647658
邀请新用户注册赠送积分活动 623056