A New ECT Image Reconstruction Algorithm Based on Vision Transformer (ViT)

计算机科学 变压器 人工智能 计算机视觉 算法 电气工程 电压 工程类
作者
Xinjie Wu,Si-Kai Xu,Mingyu Gao,Yandong Liu,Shi-Xing Liu,Hua Yan,Yan Wang
出处
期刊:Flow Measurement and Instrumentation [Elsevier]
卷期号:: 102611-102611 被引量:1
标识
DOI:10.1016/j.flowmeasinst.2024.102611
摘要

Aiming at the problem of low accuracy of ECT image reconstruction, this paper proposes an ECT image reconstruction algorithm based on Vision Transformer (ViT). ViT is a method that applies the Transformer to the field of image classification, which is characterized by strong long-distance dependency learning ability and strong multi-modal fusion ability compared to CNN. This paper fully utilizes the characteristics of ViT to transform the image reconstruction process of ECT into the classification process of ViT. Here, a method is proposed to use the object field distribution as the image classification label. This method converts a two-dimensional image of the object field distribution into a one-dimensional vector, which is the label vector of the image classification. These vectors and their corresponding reconstructed images obtained by the Landweber algorithm form the sample set of ViT. Extracting a large number of flow pattern samples with various shapes and distributions through COMSOL is used as a training set. After training ViT, this network model is used to infer the labels of the predicted flow patterns. After post-processing this label, the corresponding reconstructed image can be obtained. Finally, simulation experiments are conducted, and the experiments results show that the image errors and correlation coefficients of the reconstructed images obtained through the algorithm in this paper are better than those of Tikhonov algorithm, Landweber algorithm and Long Short-Term Memory Network(LSTM). And this algorithm has better resistance to noise interference than Tikhonov algorithm, Landweber algorithm, and LSTM. This also provides a new approach and means for ECT image reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助xiaoliu采纳,获得10
1秒前
fox199753206完成签到,获得积分10
1秒前
DamonChen发布了新的文献求助10
1秒前
斯文败类应助Li采纳,获得10
1秒前
Century发布了新的文献求助10
2秒前
2秒前
CodeCraft应助Qing采纳,获得10
2秒前
子衿完成签到,获得积分10
2秒前
11231完成签到,获得积分20
2秒前
Jasper应助张熙媛采纳,获得10
3秒前
Omega完成签到,获得积分10
3秒前
傻丢发布了新的文献求助10
3秒前
木棉完成签到,获得积分10
3秒前
小丸子发布了新的文献求助10
4秒前
Jessie完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
一脚跨越南北极完成签到,获得积分10
6秒前
6秒前
6秒前
CipherSage应助congjia采纳,获得10
7秒前
7秒前
lsl完成签到 ,获得积分10
7秒前
要吃虾饺发布了新的文献求助30
8秒前
9秒前
Akim应助An采纳,获得10
9秒前
9秒前
小张呢好发布了新的文献求助10
9秒前
狂野的钻石完成签到 ,获得积分10
9秒前
呆萌的书桃完成签到,获得积分10
9秒前
脑洞疼应助迁湾采纳,获得10
10秒前
幸福遥完成签到 ,获得积分20
10秒前
10秒前
科研通AI6应助活泼的阁采纳,获得10
11秒前
11秒前
来自列克星敦的枪声完成签到,获得积分10
12秒前
12秒前
yangbo发布了新的文献求助20
12秒前
ferritin完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577