亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Wheat Leaf Disease Classification: Evaluating Augmentation Strategies and CNN-Based Models With Limited Dataset

计算机科学 分类器(UML) 混淆矩阵 人工智能 混乱 机器学习 随机森林 上下文图像分类 粮食安全 鉴定(生物学) 模式识别(心理学) 图像(数学) 农业 精神分析 生物 植物 生态学 心理学
作者
Syed Taha Yeasin Ramadan,Tanjim Sakib,Fahmid Al Farid,Md Shofiqul Islam,Junaidi Abdullah,Md Roman Bhuiyan,Sarina Mansor,Hezerul Abdul Karim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 69853-69874 被引量:1
标识
DOI:10.1109/access.2024.3397570
摘要

Global food security is seriously threatened by wheat leaf disease, which makes effective and precise disease detection and classification techniques necessary. For efficient disease control and the best possible crop health, timely identification and precise classification are essential. However, the limited availability of datasets for wheat leaf diseases hinders the development of effective and robust classification models. This research emphasizes the importance of precise wheat leaf disease diagnosis for global food security. The existing methods face challenges with limited data and computational demands. The research explores the potential of deep learning for automated disease detection, considering these challenges. CycleGAN proved to be the most effective among various augmentation techniques, enhancing the performance of classifiers DenseNet121, ResNet50V2, DenseNet169, Xception, ResNet152V2, and MobileNetV2. ADASYN also significantly improved classification accuracy, with MobileNetV2 consistently outperforming across different augmentation methods. This technique excels in overcoming challenges posed by limited datasets and class imbalances. Using CycleGAN for data augmentation notably enhanced classifier performance, addressing the scarcity of real-world samples. Evaluation through confusion matrix analysis revealed a minimal number of misclassified images—possibly as low as 0 to 3 images over the test dataset. The exceptional 100% accuracy achieved by the MobileNetV2 model on both CycleGAN and ADASYN augmented datasets highlights the potential of these techniques to unlock new levels of accuracy in wheat disease classification. This augmentation technique fine-tuned the classifier, reducing errors and highlighting the crucial role of CycleGAN in enhancing the accuracy and precision of wheat disease classification models. The proposed method establishes CycleGAN's effectiveness in augmenting wheat leaf disease classification and recognizes ADASYN's potential. The developed technique shows promise for automated disease detection in agriculture, enhancing global food security. Future research may optimize computational efficiency and explore integrating emerging technologies such as edge computing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山猪吃细糠完成签到 ,获得积分10
5秒前
ceci发布了新的文献求助10
25秒前
52秒前
53秒前
Cassel完成签到,获得积分10
54秒前
Cassel发布了新的文献求助30
57秒前
58秒前
1分钟前
Rabbithouse发布了新的文献求助10
1分钟前
薛定谔的猫猫完成签到,获得积分10
1分钟前
fuiee完成签到,获得积分10
1分钟前
清嘉完成签到,获得积分10
1分钟前
王企鹅发布了新的文献求助100
1分钟前
1分钟前
1分钟前
凌晨洋发布了新的文献求助10
1分钟前
百里盼山发布了新的文献求助10
1分钟前
赘婿应助vidya采纳,获得10
1分钟前
王企鹅发布了新的文献求助10
1分钟前
Rabbithouse完成签到,获得积分10
2分钟前
2分钟前
janice发布了新的文献求助10
2分钟前
王企鹅完成签到,获得积分10
3分钟前
乐乐应助janice采纳,获得10
3分钟前
hugeyoung完成签到,获得积分10
3分钟前
Mark完成签到 ,获得积分10
3分钟前
月5114完成签到 ,获得积分10
3分钟前
希望天下0贩的0应助xj采纳,获得10
3分钟前
vidya关注了科研通微信公众号
4分钟前
4分钟前
vidya发布了新的文献求助10
4分钟前
4分钟前
haha发布了新的文献求助10
4分钟前
cc发布了新的文献求助10
4分钟前
笨笨十三完成签到 ,获得积分10
4分钟前
俭朴蜜蜂完成签到 ,获得积分10
4分钟前
5分钟前
Starr44发布了新的文献求助10
5分钟前
欣喜的代容完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801948
关于积分的说明 7845974
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748