Improving Wheat Leaf Disease Classification: Evaluating Augmentation Strategies and CNN-Based Models With Limited Dataset

计算机科学 分类器(UML) 混淆矩阵 人工智能 混乱 机器学习 随机森林 上下文图像分类 粮食安全 鉴定(生物学) 模式识别(心理学) 图像(数学) 农业 精神分析 生物 植物 生态学 心理学
作者
Syed Taha Yeasin Ramadan,Tanjim Sakib,Fahmid Al Farid,Md Shofiqul Islam,Junaidi Abdullah,Md Roman Bhuiyan,Sarina Mansor,Hezerul Abdul Karim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 69853-69874 被引量:1
标识
DOI:10.1109/access.2024.3397570
摘要

Global food security is seriously threatened by wheat leaf disease, which makes effective and precise disease detection and classification techniques necessary. For efficient disease control and the best possible crop health, timely identification and precise classification are essential. However, the limited availability of datasets for wheat leaf diseases hinders the development of effective and robust classification models. This research emphasizes the importance of precise wheat leaf disease diagnosis for global food security. The existing methods face challenges with limited data and computational demands. The research explores the potential of deep learning for automated disease detection, considering these challenges. CycleGAN proved to be the most effective among various augmentation techniques, enhancing the performance of classifiers DenseNet121, ResNet50V2, DenseNet169, Xception, ResNet152V2, and MobileNetV2. ADASYN also significantly improved classification accuracy, with MobileNetV2 consistently outperforming across different augmentation methods. This technique excels in overcoming challenges posed by limited datasets and class imbalances. Using CycleGAN for data augmentation notably enhanced classifier performance, addressing the scarcity of real-world samples. Evaluation through confusion matrix analysis revealed a minimal number of misclassified images—possibly as low as 0 to 3 images over the test dataset. The exceptional 100% accuracy achieved by the MobileNetV2 model on both CycleGAN and ADASYN augmented datasets highlights the potential of these techniques to unlock new levels of accuracy in wheat disease classification. This augmentation technique fine-tuned the classifier, reducing errors and highlighting the crucial role of CycleGAN in enhancing the accuracy and precision of wheat disease classification models. The proposed method establishes CycleGAN's effectiveness in augmenting wheat leaf disease classification and recognizes ADASYN's potential. The developed technique shows promise for automated disease detection in agriculture, enhancing global food security. Future research may optimize computational efficiency and explore integrating emerging technologies such as edge computing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦远山应助Seldomyg采纳,获得10
1秒前
糟糕的台灯完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
魔幻的雨灵完成签到,获得积分20
3秒前
sheep完成签到,获得积分10
3秒前
21完成签到 ,获得积分10
4秒前
Mary完成签到 ,获得积分10
5秒前
Jason完成签到 ,获得积分10
5秒前
小兔快跑完成签到 ,获得积分10
5秒前
慧仔53完成签到 ,获得积分10
5秒前
Jun完成签到 ,获得积分10
6秒前
今后应助111采纳,获得10
7秒前
cowpp完成签到 ,获得积分10
7秒前
小黑完成签到,获得积分10
7秒前
塑料做的蜻蜓完成签到 ,获得积分10
7秒前
EPHL发布了新的文献求助10
7秒前
快歌完成签到,获得积分10
8秒前
彩色德天完成签到,获得积分10
8秒前
大模型应助wanghui采纳,获得10
9秒前
小超人完成签到 ,获得积分10
9秒前
9秒前
落后茗茗完成签到 ,获得积分10
9秒前
屈绮兰发布了新的文献求助50
9秒前
跳跃的航空完成签到 ,获得积分10
10秒前
keyanbrant完成签到 ,获得积分10
11秒前
阿逊完成签到 ,获得积分10
11秒前
Akim应助at采纳,获得10
12秒前
yzhilson完成签到 ,获得积分10
12秒前
橘子完成签到 ,获得积分10
13秒前
小二郎应助vvA11采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
斯文败类应助无声瀑布采纳,获得10
13秒前
不安的富完成签到 ,获得积分10
13秒前
pluto应助彩色德天采纳,获得10
14秒前
溜溜完成签到 ,获得积分10
15秒前
kakakaku完成签到,获得积分10
15秒前
王清水完成签到 ,获得积分10
15秒前
受伤的怀绿完成签到,获得积分10
16秒前
gsj完成签到 ,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662308
求助须知:如何正确求助?哪些是违规求助? 3223121
关于积分的说明 9750208
捐赠科研通 2932983
什么是DOI,文献DOI怎么找? 1605851
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727