细胞生物学
线粒体
生物
肾上腺脑白质营养不良
线粒体融合
过氧化物酶体
线粒体分裂
DNAJA3公司
线粒体DNA
白质营养不良
生物化学
医学
内科学
基因
疾病
作者
Nathalie Launay,Jone López‐Erauskin,Patrizia Bianchi,Sanjib Guha,Janani Parameswaran,Andrea Coppa,Lorenzo Torreni,Agatha Schlüter,Stéphane Fourcade,Abraham J. Paredes‐Fuentes,Rafael Artuch,Carlos Casasnovas,Montserrat Ruíz,Aurora Pujol
出处
期刊:Brain
[Oxford University Press]
日期:2024-05-20
标识
DOI:10.1093/brain/awae038
摘要
Abstract The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1− mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients’ CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.
科研通智能强力驱动
Strongly Powered by AbleSci AI