A Comparative Analysis of Statistical Machine Learning and Deep Learning for Identifying Cyber Trolls on Twitter Data

计算机科学 人工智能 机器学习 随机森林 朴素贝叶斯分类器 深度学习 集成学习 决策树 大数据 随机梯度下降算法 预处理器 支持向量机 数据挖掘 人工神经网络
作者
Sajib Kumar Das,Muhammad Anwarul Azim,Abu Nowshed Chy,Mohammad Khairul Islam,Niladree Datta
标识
DOI:10.1109/iceeict62016.2024.10534583
摘要

Cybertrolling is the act of inciting and attacking someone's emotions on a social networking platform, which occurs all over the world, including Bangladesh. Many big data applications are interested in identifying trolls from tweets, which is a challenging task. It is equally crucial to ensure the safety of social networking sites against cybertrolling. Only automated identification c an prevent trolling since human moderation is slow, costly, and even impractical for rapidly expanding data. Most of the previous state-of-the-art work done to overcome this problem was based on machine learning, deep learning and transformer-based models, where the authors' work did not focus much on appropriate text preprocessing techniques, which led to subpar method performance. In this paper, we investigated the performance of statistical machine learning and deep learning algorithms with extensive preprocessing techniques and statistical features to bridge the gap of earlier research work on the publicly available dataset titled 'Tweets dataset for Detection of Cyber- Trolls' to distinguish between troll tweets and non-troll tweets. For machine learning, we used random forest, decision tree, stochastic gradient descent, multinomial naive Bayes, linear SVC, and logistic regression algorithms, as well as LSTM and CNN for deep learning. Then, an ensemble classification was also implemented by combining the best three classifiers based on majority voting. The comparative analysis demonstrated that multinomial naive Bayes reached an Fl-score of 95 %, which gives better results compared to other models because of an ensemble of preprocessing techniques with statistical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高荣锴完成签到 ,获得积分10
1秒前
1秒前
牟泓宇完成签到 ,获得积分10
1秒前
星空发布了新的文献求助10
2秒前
潇洒荧荧发布了新的文献求助10
2秒前
2秒前
听风发布了新的文献求助10
3秒前
隐形曼青应助yclbz采纳,获得10
3秒前
一期一会发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
5秒前
wada酱完成签到,获得积分10
6秒前
Ry0_发布了新的文献求助10
6秒前
7秒前
hd发布了新的文献求助10
7秒前
8秒前
8秒前
huzhennn发布了新的文献求助10
9秒前
一枝安发布了新的文献求助10
9秒前
愉快梦之发布了新的文献求助10
10秒前
10秒前
11秒前
如意完成签到,获得积分10
11秒前
思源应助淡然的蓝天采纳,获得10
11秒前
11秒前
12秒前
13秒前
wmn完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
Ry0_完成签到,获得积分10
17秒前
沉静冰夏完成签到 ,获得积分10
17秒前
Desperado完成签到,获得积分10
17秒前
贾克斯发布了新的文献求助10
18秒前
18秒前
江苏大学完成签到,获得积分20
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079