A Comparative Analysis of Statistical Machine Learning and Deep Learning for Identifying Cyber Trolls on Twitter Data

计算机科学 人工智能 机器学习 随机森林 朴素贝叶斯分类器 深度学习 集成学习 决策树 大数据 随机梯度下降算法 预处理器 支持向量机 数据挖掘 人工神经网络
作者
Sajib Kumar Das,Muhammad Anwarul Azim,Abu Nowshed Chy,Mohammad Khairul Islam,Niladree Datta
标识
DOI:10.1109/iceeict62016.2024.10534583
摘要

Cybertrolling is the act of inciting and attacking someone's emotions on a social networking platform, which occurs all over the world, including Bangladesh. Many big data applications are interested in identifying trolls from tweets, which is a challenging task. It is equally crucial to ensure the safety of social networking sites against cybertrolling. Only automated identification c an prevent trolling since human moderation is slow, costly, and even impractical for rapidly expanding data. Most of the previous state-of-the-art work done to overcome this problem was based on machine learning, deep learning and transformer-based models, where the authors' work did not focus much on appropriate text preprocessing techniques, which led to subpar method performance. In this paper, we investigated the performance of statistical machine learning and deep learning algorithms with extensive preprocessing techniques and statistical features to bridge the gap of earlier research work on the publicly available dataset titled 'Tweets dataset for Detection of Cyber- Trolls' to distinguish between troll tweets and non-troll tweets. For machine learning, we used random forest, decision tree, stochastic gradient descent, multinomial naive Bayes, linear SVC, and logistic regression algorithms, as well as LSTM and CNN for deep learning. Then, an ensemble classification was also implemented by combining the best three classifiers based on majority voting. The comparative analysis demonstrated that multinomial naive Bayes reached an Fl-score of 95 %, which gives better results compared to other models because of an ensemble of preprocessing techniques with statistical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
good关注了科研通微信公众号
刚刚
刚刚
punchline完成签到 ,获得积分10
刚刚
Ava应助April采纳,获得10
刚刚
苔原猫咪甜甜圈完成签到,获得积分10
1秒前
骑着蚂蚁追大象完成签到,获得积分10
1秒前
aaa发布了新的文献求助10
1秒前
1秒前
退堂鼓完成签到,获得积分20
1秒前
阿巴发布了新的文献求助10
1秒前
罗实发布了新的文献求助10
1秒前
愉快寄真完成签到,获得积分10
2秒前
2秒前
2秒前
tzy完成签到,获得积分10
3秒前
随聚随分完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
孟陬十一发布了新的文献求助20
4秒前
4秒前
最优解发布了新的文献求助50
4秒前
huanhuan完成签到,获得积分10
5秒前
阿金发布了新的文献求助10
5秒前
啱啱发布了新的文献求助10
6秒前
chenxin7271发布了新的文献求助10
6秒前
可乐完成签到,获得积分10
6秒前
benben发布了新的文献求助10
6秒前
壹拾柒发布了新的文献求助20
6秒前
桐桐应助无情的白桃采纳,获得10
7秒前
请叫我风吹麦浪应助himsn采纳,获得40
7秒前
tzy发布了新的文献求助10
7秒前
8秒前
8秒前
今后应助专注的易文采纳,获得10
9秒前
lin完成签到,获得积分10
9秒前
执着的若灵完成签到,获得积分10
9秒前
9秒前
甜北枳完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762