已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Comparative Analysis of Statistical Machine Learning and Deep Learning for Identifying Cyber Trolls on Twitter Data

计算机科学 人工智能 机器学习 随机森林 朴素贝叶斯分类器 深度学习 集成学习 决策树 大数据 随机梯度下降算法 预处理器 支持向量机 数据挖掘 人工神经网络
作者
Sajib Kumar Das,Muhammad Anwarul Azim,Abu Nowshed Chy,Mohammad Khairul Islam,Niladree Datta
标识
DOI:10.1109/iceeict62016.2024.10534583
摘要

Cybertrolling is the act of inciting and attacking someone's emotions on a social networking platform, which occurs all over the world, including Bangladesh. Many big data applications are interested in identifying trolls from tweets, which is a challenging task. It is equally crucial to ensure the safety of social networking sites against cybertrolling. Only automated identification c an prevent trolling since human moderation is slow, costly, and even impractical for rapidly expanding data. Most of the previous state-of-the-art work done to overcome this problem was based on machine learning, deep learning and transformer-based models, where the authors' work did not focus much on appropriate text preprocessing techniques, which led to subpar method performance. In this paper, we investigated the performance of statistical machine learning and deep learning algorithms with extensive preprocessing techniques and statistical features to bridge the gap of earlier research work on the publicly available dataset titled 'Tweets dataset for Detection of Cyber- Trolls' to distinguish between troll tweets and non-troll tweets. For machine learning, we used random forest, decision tree, stochastic gradient descent, multinomial naive Bayes, linear SVC, and logistic regression algorithms, as well as LSTM and CNN for deep learning. Then, an ensemble classification was also implemented by combining the best three classifiers based on majority voting. The comparative analysis demonstrated that multinomial naive Bayes reached an Fl-score of 95 %, which gives better results compared to other models because of an ensemble of preprocessing techniques with statistical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Cc完成签到 ,获得积分10
1秒前
文静听南完成签到 ,获得积分10
2秒前
红毛兔完成签到,获得积分10
2秒前
MySun完成签到 ,获得积分10
2秒前
Nicole发布了新的文献求助10
4秒前
加减乘除完成签到 ,获得积分10
5秒前
XDSH完成签到 ,获得积分10
6秒前
猪猪侠发布了新的文献求助10
6秒前
月上柳梢头A1完成签到,获得积分10
9秒前
Jemma完成签到 ,获得积分10
10秒前
伤心小王不暴躁完成签到 ,获得积分10
10秒前
FashionBoy应助gudagang采纳,获得10
12秒前
猪猪侠完成签到,获得积分10
14秒前
bkagyin应助ergou采纳,获得10
14秒前
Shyee完成签到 ,获得积分0
17秒前
ever完成签到 ,获得积分10
17秒前
XU2025完成签到 ,获得积分10
18秒前
结实猕猴桃完成签到 ,获得积分10
18秒前
yilei完成签到,获得积分10
22秒前
22秒前
李健的小迷弟应助Nicole采纳,获得10
23秒前
lllwww完成签到 ,获得积分10
26秒前
在水一方完成签到 ,获得积分10
27秒前
serena发布了新的文献求助10
28秒前
vv完成签到 ,获得积分10
29秒前
笨笨完成签到,获得积分10
31秒前
徐1完成签到 ,获得积分10
33秒前
伶俐的铁身完成签到,获得积分10
34秒前
七大洋的风完成签到,获得积分10
39秒前
Clay完成签到 ,获得积分10
41秒前
滴滴答完成签到 ,获得积分10
45秒前
miracle完成签到 ,获得积分10
46秒前
JamesPei应助zhu采纳,获得10
47秒前
48秒前
lhy12345完成签到 ,获得积分10
50秒前
51秒前
天天快乐应助XLC采纳,获得10
53秒前
躺平发布了新的文献求助20
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875328
求助须知:如何正确求助?哪些是违规求助? 6515317
关于积分的说明 15676689
捐赠科研通 4993246
什么是DOI,文献DOI怎么找? 2691404
邀请新用户注册赠送积分活动 1633655
关于科研通互助平台的介绍 1591333