A Comparative Analysis of Statistical Machine Learning and Deep Learning for Identifying Cyber Trolls on Twitter Data

计算机科学 人工智能 机器学习 随机森林 朴素贝叶斯分类器 深度学习 集成学习 决策树 大数据 随机梯度下降算法 预处理器 支持向量机 数据挖掘 人工神经网络
作者
Sajib Kumar Das,Muhammad Anwarul Azim,Abu Nowshed Chy,Mohammad Khairul Islam,Niladree Datta
标识
DOI:10.1109/iceeict62016.2024.10534583
摘要

Cybertrolling is the act of inciting and attacking someone's emotions on a social networking platform, which occurs all over the world, including Bangladesh. Many big data applications are interested in identifying trolls from tweets, which is a challenging task. It is equally crucial to ensure the safety of social networking sites against cybertrolling. Only automated identification c an prevent trolling since human moderation is slow, costly, and even impractical for rapidly expanding data. Most of the previous state-of-the-art work done to overcome this problem was based on machine learning, deep learning and transformer-based models, where the authors' work did not focus much on appropriate text preprocessing techniques, which led to subpar method performance. In this paper, we investigated the performance of statistical machine learning and deep learning algorithms with extensive preprocessing techniques and statistical features to bridge the gap of earlier research work on the publicly available dataset titled 'Tweets dataset for Detection of Cyber- Trolls' to distinguish between troll tweets and non-troll tweets. For machine learning, we used random forest, decision tree, stochastic gradient descent, multinomial naive Bayes, linear SVC, and logistic regression algorithms, as well as LSTM and CNN for deep learning. Then, an ensemble classification was also implemented by combining the best three classifiers based on majority voting. The comparative analysis demonstrated that multinomial naive Bayes reached an Fl-score of 95 %, which gives better results compared to other models because of an ensemble of preprocessing techniques with statistical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mini发布了新的文献求助10
刚刚
安详的嵩发布了新的文献求助10
2秒前
积极以云完成签到,获得积分10
2秒前
于水清发布了新的文献求助10
3秒前
4秒前
4秒前
自由的西装完成签到,获得积分10
5秒前
callmecjh发布了新的文献求助10
6秒前
在水一方应助1234采纳,获得10
7秒前
充电宝应助小纯洁采纳,获得10
9秒前
9秒前
11秒前
乐正广山发布了新的文献求助10
12秒前
海的呼唤发布了新的文献求助10
12秒前
12秒前
13秒前
callmecjh完成签到,获得积分10
13秒前
L3213036054发布了新的文献求助10
14秒前
14秒前
lala完成签到,获得积分10
14秒前
思源应助Andrea采纳,获得10
15秒前
神勇的曼柔关注了科研通微信公众号
15秒前
fufu完成签到 ,获得积分10
16秒前
华国锋应助科研通管家采纳,获得20
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
谢许杯商应助科研通管家采纳,获得20
16秒前
Ava应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得30
17秒前
科研助手6应助科研通管家采纳,获得10
17秒前
whatever应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
17秒前
断数循环应助科研通管家采纳,获得10
17秒前
17秒前
所所应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014