亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Comparative Analysis of Statistical Machine Learning and Deep Learning for Identifying Cyber Trolls on Twitter Data

计算机科学 人工智能 机器学习 随机森林 朴素贝叶斯分类器 深度学习 集成学习 决策树 大数据 随机梯度下降算法 预处理器 支持向量机 数据挖掘 人工神经网络
作者
Sajib Kumar Das,Muhammad Anwarul Azim,Abu Nowshed Chy,Mohammad Khairul Islam,Niladree Datta
标识
DOI:10.1109/iceeict62016.2024.10534583
摘要

Cybertrolling is the act of inciting and attacking someone's emotions on a social networking platform, which occurs all over the world, including Bangladesh. Many big data applications are interested in identifying trolls from tweets, which is a challenging task. It is equally crucial to ensure the safety of social networking sites against cybertrolling. Only automated identification c an prevent trolling since human moderation is slow, costly, and even impractical for rapidly expanding data. Most of the previous state-of-the-art work done to overcome this problem was based on machine learning, deep learning and transformer-based models, where the authors' work did not focus much on appropriate text preprocessing techniques, which led to subpar method performance. In this paper, we investigated the performance of statistical machine learning and deep learning algorithms with extensive preprocessing techniques and statistical features to bridge the gap of earlier research work on the publicly available dataset titled 'Tweets dataset for Detection of Cyber- Trolls' to distinguish between troll tweets and non-troll tweets. For machine learning, we used random forest, decision tree, stochastic gradient descent, multinomial naive Bayes, linear SVC, and logistic regression algorithms, as well as LSTM and CNN for deep learning. Then, an ensemble classification was also implemented by combining the best three classifiers based on majority voting. The comparative analysis demonstrated that multinomial naive Bayes reached an Fl-score of 95 %, which gives better results compared to other models because of an ensemble of preprocessing techniques with statistical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbsheng完成签到,获得积分10
7秒前
32秒前
学术小白完成签到,获得积分0
34秒前
34秒前
馆长举报waoller1求助涉嫌违规
34秒前
可爱的函函应助cctoday采纳,获得10
48秒前
Wyoou发布了新的文献求助10
49秒前
52秒前
XiaoLiu应助Virtual采纳,获得50
1分钟前
GIA完成签到,获得积分10
1分钟前
852应助wuran采纳,获得10
1分钟前
XiaoLiu应助Virtual采纳,获得50
1分钟前
1分钟前
1分钟前
1分钟前
wuran发布了新的文献求助10
1分钟前
cctoday发布了新的文献求助10
1分钟前
馆长应助wuran采纳,获得30
1分钟前
cctoday完成签到,获得积分10
2分钟前
2分钟前
粥粥完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
自由的无色完成签到 ,获得积分10
2分钟前
2分钟前
爱吃皮囊的大馋虫完成签到,获得积分10
2分钟前
2分钟前
石石夏发布了新的文献求助10
3分钟前
香蕉觅云应助石石夏采纳,获得10
3分钟前
Una完成签到,获得积分20
3分钟前
3分钟前
honphyjiang发布了新的文献求助10
3分钟前
馆长举报曾丹么么哒求助涉嫌违规
3分钟前
dormraider完成签到,获得积分10
4分钟前
彭于晏应助方俊驰采纳,获得10
4分钟前
4分钟前
4分钟前
方俊驰发布了新的文献求助10
4分钟前
方俊驰完成签到,获得积分10
4分钟前
honphyjiang完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568572
求助须知:如何正确求助?哪些是违规求助? 3991139
关于积分的说明 12355423
捐赠科研通 3663104
什么是DOI,文献DOI怎么找? 2018685
邀请新用户注册赠送积分活动 1053099
科研通“疑难数据库(出版商)”最低求助积分说明 940689