A Comparative Analysis of Statistical Machine Learning and Deep Learning for Identifying Cyber Trolls on Twitter Data

计算机科学 人工智能 机器学习 随机森林 朴素贝叶斯分类器 深度学习 集成学习 决策树 大数据 随机梯度下降算法 预处理器 支持向量机 数据挖掘 人工神经网络
作者
Sajib Kumar Das,Muhammad Anwarul Azim,Abu Nowshed Chy,Mohammad Khairul Islam,Niladree Datta
标识
DOI:10.1109/iceeict62016.2024.10534583
摘要

Cybertrolling is the act of inciting and attacking someone's emotions on a social networking platform, which occurs all over the world, including Bangladesh. Many big data applications are interested in identifying trolls from tweets, which is a challenging task. It is equally crucial to ensure the safety of social networking sites against cybertrolling. Only automated identification c an prevent trolling since human moderation is slow, costly, and even impractical for rapidly expanding data. Most of the previous state-of-the-art work done to overcome this problem was based on machine learning, deep learning and transformer-based models, where the authors' work did not focus much on appropriate text preprocessing techniques, which led to subpar method performance. In this paper, we investigated the performance of statistical machine learning and deep learning algorithms with extensive preprocessing techniques and statistical features to bridge the gap of earlier research work on the publicly available dataset titled 'Tweets dataset for Detection of Cyber- Trolls' to distinguish between troll tweets and non-troll tweets. For machine learning, we used random forest, decision tree, stochastic gradient descent, multinomial naive Bayes, linear SVC, and logistic regression algorithms, as well as LSTM and CNN for deep learning. Then, an ensemble classification was also implemented by combining the best three classifiers based on majority voting. The comparative analysis demonstrated that multinomial naive Bayes reached an Fl-score of 95 %, which gives better results compared to other models because of an ensemble of preprocessing techniques with statistical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逗逗发布了新的文献求助10
刚刚
orixero应助Iris采纳,获得10
刚刚
刚刚
鹅鹅完成签到 ,获得积分10
刚刚
hard完成签到,获得积分10
1秒前
CocoGabrielle完成签到,获得积分10
1秒前
1秒前
的奖学金喜欢喜欢大呼小叫难受完成签到 ,获得积分10
2秒前
ABC的FGH发布了新的文献求助10
2秒前
2秒前
思源应助韩妙采纳,获得10
2秒前
研友_8yN60L完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
子晏发布了新的文献求助10
4秒前
wuyoucaoxin完成签到,获得积分10
5秒前
直率初露发布了新的文献求助10
5秒前
yc发布了新的文献求助10
6秒前
科研通AI2S应助lidd采纳,获得10
6秒前
fff完成签到,获得积分10
6秒前
平淡惋清发布了新的文献求助10
7秒前
7秒前
7秒前
小窝发布了新的文献求助10
7秒前
Akim应助itharmony采纳,获得10
8秒前
czt完成签到,获得积分10
8秒前
ZHa0发布了新的文献求助10
8秒前
8秒前
Selina完成签到 ,获得积分10
8秒前
9秒前
冷傲的书兰完成签到,获得积分10
9秒前
无敌小狐发布了新的文献求助10
10秒前
外向的鑫完成签到,获得积分10
10秒前
包佳梁发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
dbb发布了新的文献求助10
11秒前
JC325T完成签到,获得积分10
11秒前
12秒前
赘婿应助xueshu采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342