Machine learning and experimental testing for prediction of breakage rate of maize kernels based on components contents

破损 支持向量机 逐步回归 径向基函数 多元统计 特征选择 人工智能 回归分析 多项式的 交叉验证 决定系数 回归 试验装置 线性回归 均方误差 相关系数 计算机科学 数学 统计 人工神经网络 万维网 数学分析
作者
Mengmeng Qiao,Guoyi Xia,Tao Cui,Yang Xu,Chenlong Fan,Yuan Su,Yibo Li,Shaoyun Han
出处
期刊:Journal of Cereal Science [Elsevier BV]
卷期号:108: 103582-103582 被引量:12
标识
DOI:10.1016/j.jcs.2022.103582
摘要

A high breakage rate (BR) of maize kernels is the main problem during the direct harvest of maize kernels which causes massive grain losses. Thus, a solution was provided for reducing BR in harvest by predicting BR to select a suitable harvest time. The BR prediction models of maize kernels based on moisture, protein and starch contents were studied by using multivariate polynomial regression, stepwise polynomial regression, support vector regression (SVR) and extreme learning regression. SVR with radial basis function (rbf-SVR) was selected for further analysis. The performances of 7 different rbf-SVR models with single and multiple combinations of three components contents were evaluated. The rbf-SVR model constructed with moisture, protein and starch contents (rbf-SVR Ms + Pr + St ), which were regarded as predictor variables, generated the most accurate BR estimate. The correlation coefficients of the correction set and prediction set were 0.8921 and 0.8776, respectively. The root mean square errors of the correction set and prediction set were 1.3898% and 1.3767%, respectively. The adjusted R 2 was 0.7851. The average classification accuracy was 82.17%. As a result, the rbf-SVR Ms + Pr + St model can comprehensively evaluate BR and guide the selection of appropriate harvest time, to reduce the BR. • The relationships between components contents and BR of maize kernels were studied. • The BR prediction models were built by machine learning (MPR, SPR, SVR and ELR). • The rbf-SVR Ms + Pr + St model achieved the highest accuracy in predicting BR. • A solution was provided for reducing BR in harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
1秒前
3秒前
hesongheng完成签到,获得积分10
3秒前
4秒前
可乐不加冰完成签到,获得积分10
5秒前
哈哈哈完成签到,获得积分10
5秒前
Vroom完成签到,获得积分10
5秒前
共享精神应助落寞之云采纳,获得10
5秒前
六碗鱼完成签到 ,获得积分10
6秒前
7秒前
Jonathan完成签到,获得积分10
8秒前
季夏完成签到,获得积分20
8秒前
南枝发布了新的文献求助10
10秒前
李雪关注了科研通微信公众号
11秒前
心灵美的修洁完成签到 ,获得积分10
12秒前
彭于晏应助精明外套采纳,获得10
13秒前
14秒前
派大星的海洋裤完成签到,获得积分10
15秒前
18秒前
清脆愫完成签到 ,获得积分10
19秒前
希望天下0贩的0应助季夏采纳,获得10
19秒前
鳗鱼涵梅发布了新的文献求助10
20秒前
英俊的铭应助卿昀采纳,获得10
20秒前
体贴坤坤完成签到 ,获得积分10
21秒前
精明外套发布了新的文献求助10
22秒前
ding应助拼搏的若山采纳,获得10
23秒前
25秒前
lnny完成签到,获得积分10
25秒前
汉堡包应助ffff采纳,获得10
27秒前
mawanyu发布了新的文献求助10
29秒前
Hello应助蜡笔小z采纳,获得10
36秒前
鳗鱼涵梅完成签到,获得积分10
37秒前
余晓完成签到,获得积分10
40秒前
小好完成签到,获得积分20
44秒前
wanci应助虚心小萱采纳,获得10
45秒前
活力的珊完成签到 ,获得积分10
45秒前
shinble发布了新的文献求助10
50秒前
53秒前
SSS完成签到 ,获得积分10
53秒前
小好发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3768066
求助须知:如何正确求助?哪些是违规求助? 3312881
关于积分的说明 10165139
捐赠科研通 3027927
什么是DOI,文献DOI怎么找? 1661774
邀请新用户注册赠送积分活动 794289
科研通“疑难数据库(出版商)”最低求助积分说明 756063