Unraveling the Heterogeneity of Multiple Myeloma Cells By Single-Cell RNA Sequencing Analysis

多发性骨髓瘤 生物 核糖核酸 单细胞分析 计算生物学 遗传学 细胞 基因 免疫学
作者
Takahiro Kamiya,Motohiko Oshima,Shuhei Koide,Yaeko Nakajima‐Takagi,Kazumasa Aoyama,Naoki Itokawa,Masayuki Yamashita,Noriko Doki,Keisuke Kataoka,Atsushi Iwama
出处
期刊:Blood [American Society of Hematology]
卷期号:140 (Supplement 1): 9939-9940 被引量:1
标识
DOI:10.1182/blood-2022-166085
摘要

Multiple myeloma (MM) is a malignancy of clonal plasma cells with identical variable-diversity-joining (VDJ) region recombination of immunoglobulin loci (called repertoire) and extensive genome or transcriptome heterogeneity. Even though many new treatment modalities have been developed and the prognosis of patients has improved significantly, most cases of MM remain incurable. Recent evidence suggests that non-genetic cell plasticity and changes in cell state underlie the therapy resistance and tumor relapse, but the mechanisms remain largely unknown. Here, we have attempted to understand comprehensive architecture of the entire tumor cell populations using repertoire clonality as fingerprint. First, we subdivided bone marrow samples of primary MM at different stages (n=8) into 11 fractions based on the known surface antigens of MM and performed bulk RNA sequencing (bulk RNA-seq). Analysis of the repertoire revealed that tumor cells were also present in some minor fractions other than the main fraction (Lin-/CD19-/CD38++/CD138+) as the stage progressed. Importantly, cells with clonal repertoire were detected in CD138 negative fraction (Lin-/CD19-/CD38++/CD138-) in most samples (Monoclonal gammopathy of undetermined significance (MGUS) / Smoldering multiple myeloma (SMM) = 4.15±2.28%, Primary MM = 6.78±3.59%, Relapse MM = 7.8±5.82% [mean±95%Cl], n=24). The CD138 positive and negative cells were also morphologically different, suggesting that they were composed by cells of distinct characteristics. Indeed, comparison of the transcriptome data revealed 296 differentially expressed genes (DEGs) between these fractions (250 up-regulated and 46 down-regulated in CD138 negative fractions). Of interest, several pathways related to H3K4 methylation were positively enriched in CD138 negative fraction (p <0.001), which included KMT2A, KMT2B, KMT2C, KMT2D, and ASH1L, suggesting that differential methylation of histone H4 accounts for the heterogeneity of MM. In order to achieve a high-resolution and comprehensive evaluation of the entire tumor cell populations, we performed single-cell RNA sequencing (scRNA-seq) and single-cell VDJ targeted sequencing (scVDJ-seq) concurrently on Lin-/CD38++ sorted cells of 8 bone marrow samples from 7 patients including pre- and post-treatment status samples. This method allowed us to define normal cells and MM cells at the single-cell level by clonal repertoire sequence independent of transcriptome characteristics. We divided 18,031 MM cells into 23 clusters after integration. We first defined CD138 positive and negative MM gene signature using bulk RNA-seq data and then evaluated the scRNA-seq data. Notably, the CD138 axis appeared to clearly subdivide main MM populations into those with CD138 positive and negative MM gene signature. We also found that a part of clusters, which showed CD138 negative MM gene signature, tended to remain at high proportions after treatment. These populations were characterized by low expression levels of MHC class-I components and TNFRSF17/BCMA as well as high expression of MCL1, MALAT1 and NEAT1, which have been previously implicated in treatment resistance, and were present in all samples. H3K4 methylation related genes were also up-regulated in these populations. Furthermore, we found several clusters with unique and interesting characteristics independent of the CD138 axis. Trajectory and velocity analysis suggested that all cell populations transit to each other. Taken together, our results establish the heterogeneity of MM cells by the CD138 axis, which may be characterized by epigenetic plasticity. They also highlight CD138 negative population as a potential cause of treatment resistance and relapse. By using information of repertoire, we have achieved a comprehensive and accurate single-cell analysis of MM cell diversity that was not limited by cell surface antigens or transcriptome characteristics. We are currently analyzing near minimal residual disease (MRD) level samples using the same scRNA-seq methods and the functional and epigenetic properties of CD138 positive and negative MM cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chao完成签到,获得积分10
刚刚
科研通AI6应助JY采纳,获得10
刚刚
笑看小旭旭完成签到,获得积分20
3秒前
幽默书瑶完成签到 ,获得积分10
3秒前
3秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
3秒前
852应助78888采纳,获得10
3秒前
星期天发布了新的文献求助10
3秒前
桐桐应助张瑜采纳,获得10
4秒前
邓茗予完成签到,获得积分20
4秒前
水雾发布了新的文献求助10
4秒前
Lucas应助禹宛白采纳,获得10
5秒前
5秒前
吴先生完成签到,获得积分10
6秒前
6秒前
jin_0124发布了新的文献求助10
6秒前
7秒前
冯雅婷完成签到 ,获得积分10
7秒前
8秒前
8秒前
欣喜谷槐完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
小白鼠完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
科研通AI6应助Fortune采纳,获得10
10秒前
DrLee发布了新的文献求助10
11秒前
搞怪半烟完成签到,获得积分10
11秒前
害怕的惜文完成签到,获得积分10
11秒前
wlnhyF完成签到,获得积分10
11秒前
12秒前
mhpvv完成签到,获得积分10
12秒前
12秒前
东新发布了新的文献求助10
12秒前
王帅发布了新的文献求助10
12秒前
SciGPT应助YZQ采纳,获得10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802