计算机科学
分类器(UML)
面部表情识别
人工智能
模式识别(心理学)
面部表情
任务(项目管理)
标记数据
领域(数学分析)
机器学习
面部识别系统
数学
数学分析
经济
管理
作者
Hongxiang Gao,Min Wu,Zhenghua Chen,Yuwen Li,Xingyao Wang,Shan An,Jianqing Li,Chengyu Liu
标识
DOI:10.1016/j.neunet.2022.11.025
摘要
Facial expression recognition (FER) is a kind of affective computing that identifies the emotional state represented in facial photographs. Various methods have been developed for completing this critical task. In spite of this progress, three significant obstacles, the interaction between spatial action units, the inadequacy of semantic information about spectral expressions and the unbalanced data distribution, are not well addressed. In this work, we propose SSA-ICL, a novel approach for FER, and solve these three difficulties inside a coherent framework. To address the first two challenges, we develop a Spectral and Spatial Attention (SSA) module that integrates spectral semantics with spatial locations to improve the performance of the model. We provide an Intra-dataset Continual Learning (ICL) module to combat the issue of long-tail distribution in FER datasets. By subdividing a single long-tail dataset into multiple sub-datasets, ICL repeatedly trains well-balanced representations from each subset and finally develop a independent classifier. We performed extensive experiments on two publicly available datasets, AffectNet and RAFDB. In comparison to existing attention modules, our SSA achieves an accuracy improvement of 3.8%∼6.7%, as evidenced by testing results. In the meanwhile, our proposed SSA-ICL can achieve superior or comparable performance to state-of-the-art FER methods (65.78% on AffectNet and 89.44% on RAFDB).
科研通智能强力驱动
Strongly Powered by AbleSci AI