已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SSA-ICL: Multi-domain adaptive attention with intra-dataset continual learning for Facial expression recognition

计算机科学 分类器(UML) 面部表情识别 人工智能 模式识别(心理学) 面部表情 任务(项目管理) 标记数据 领域(数学分析) 机器学习 面部识别系统 数学 数学分析 经济 管理
作者
Hongxiang Gao,Min Wu,Zhenghua Chen,Yuwen Li,Xingyao Wang,Shan An,Jianqing Li,Chengyu Liu
出处
期刊:Neural Networks [Elsevier]
卷期号:158: 228-238 被引量:10
标识
DOI:10.1016/j.neunet.2022.11.025
摘要

Facial expression recognition (FER) is a kind of affective computing that identifies the emotional state represented in facial photographs. Various methods have been developed for completing this critical task. In spite of this progress, three significant obstacles, the interaction between spatial action units, the inadequacy of semantic information about spectral expressions and the unbalanced data distribution, are not well addressed. In this work, we propose SSA-ICL, a novel approach for FER, and solve these three difficulties inside a coherent framework. To address the first two challenges, we develop a Spectral and Spatial Attention (SSA) module that integrates spectral semantics with spatial locations to improve the performance of the model. We provide an Intra-dataset Continual Learning (ICL) module to combat the issue of long-tail distribution in FER datasets. By subdividing a single long-tail dataset into multiple sub-datasets, ICL repeatedly trains well-balanced representations from each subset and finally develop a independent classifier. We performed extensive experiments on two publicly available datasets, AffectNet and RAFDB. In comparison to existing attention modules, our SSA achieves an accuracy improvement of 3.8%∼6.7%, as evidenced by testing results. In the meanwhile, our proposed SSA-ICL can achieve superior or comparable performance to state-of-the-art FER methods (65.78% on AffectNet and 89.44% on RAFDB).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
辣椒完成签到 ,获得积分10
3秒前
leo7发布了新的文献求助10
3秒前
苏子饿了完成签到 ,获得积分10
4秒前
U87发布了新的文献求助80
6秒前
橙子发布了新的文献求助10
9秒前
我是老大应助佳怡采纳,获得10
9秒前
jingutaimi完成签到,获得积分10
10秒前
11秒前
寒梅恋雪完成签到 ,获得积分10
11秒前
Jasper应助leo7采纳,获得10
14秒前
清爽冬莲完成签到 ,获得积分0
15秒前
15秒前
一只小喵完成签到,获得积分10
17秒前
笑点低完成签到 ,获得积分10
17秒前
17秒前
小璐小璐要幸福完成签到 ,获得积分10
18秒前
来学习发布了新的文献求助10
18秒前
橙子完成签到,获得积分10
21秒前
亦hcy发布了新的文献求助10
21秒前
23秒前
Doctor完成签到 ,获得积分10
25秒前
DaWn完成签到 ,获得积分10
27秒前
28秒前
好久不见完成签到,获得积分10
30秒前
may完成签到 ,获得积分10
30秒前
ww发布了新的文献求助10
34秒前
34秒前
matrixu完成签到,获得积分10
36秒前
36秒前
wang_dong完成签到,获得积分10
37秒前
啊哈哈哈哈哈完成签到 ,获得积分10
40秒前
ww完成签到,获得积分10
40秒前
41秒前
完美世界应助科研通管家采纳,获得10
42秒前
乐乐应助科研通管家采纳,获得10
42秒前
英俊的铭应助科研通管家采纳,获得10
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655