纳米棒
异质结
光催化
材料科学
奥斯特瓦尔德成熟
罗丹明B
纳米技术
化学工程
载流子
可见光谱
光化学
光电子学
催化作用
化学
生物化学
工程类
作者
Peng Ju,Yu Zhang,Hao Lei,Jiazhen Cao,Xiaofan Zhai,Kunpeng Dou,Fenghua Jiang,Chengjun Sun
标识
DOI:10.1016/j.jmst.2022.09.037
摘要
In this study, a novel Bi2S3/BiOI Z-scheme photocatalyst with 3D porous hierarchical network-like heterostructure (BSBI NHs) and rich oxygen vacancies (OVs) was fabricated by a facile ion exchange method followed by the in-situ growth process. A possible formation mechanism of BSBI NHs was studied, showing the self-assembled process of in-situ interwoven growth of 1D Bi2S3 nanorods (NRs) on the surface of 2D BiOI disk-like nanoplates (NPs), which followed the Ostwald ripening and epitaxial growth. The modification of BiOI NPs by Bi2S3 NRs brought about the formation of Z-scheme heterojunction and massive OVs, which improved the visible-light response property and promoted the separation of photoexcited charge carriers of BSBI NHs. BSBI NHs exhibited a significantly enhanced photocatalytic activity compared with Bi2S3 and BiOI, and BSBI-1 can remove almost all bacteria and Rhodamine B (RhB) after 60 min visible light illumination. In addition, the photocatalytic mechanism was studied and speculated based on the tests of active species capture, electron spin resonance (ESR), and density functional theory (DFT) simulation calculation, proving the primary roles of ·OH, ·O2– and h+ during the photocatalytic reaction. This work provides new insights into the design and exploitation of novel heterojunctions with highly efficient photocatalytic performances for environmental remediation applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI