Mirror Segmentation via Semantic-aware Contextual Contrasted Feature Learning

计算机科学 分割 人工智能 特征(语言学) 影子(心理学) 一般化 计算机视觉 构造(python库) 突出 心理学 数学分析 哲学 语言学 数学 心理治疗师 程序设计语言
作者
Haiyang Mei,Letian Yu,Ke Xu,Yang Wang,Xin Yang,Xiaopeng Wei,Rynson W. H. Lau
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (2s): 1-22 被引量:6
标识
DOI:10.1145/3566127
摘要

Mirrors are everywhere in our daily lives. Existing computer vision systems do not consider mirrors, and hence may get confused by the reflected content inside a mirror, resulting in a severe performance degradation. However, separating the real content outside a mirror from the reflected content inside it is non-trivial. The key challenge is that mirrors typically reflect contents similar to their surroundings, making it very difficult to differentiate the two. In this article, we present a novel method to segment mirrors from a single RGB image. To the best of our knowledge, this is the first work to address the mirror segmentation problem with a computational approach. We make the following contributions: First, we propose a novel network, called MirrorNet+, for mirror segmentation, by modeling both contextual contrasts and semantic associations. Second, we construct the first large-scale mirror segmentation dataset, which consists of 4,018 pairs of images containing mirrors and their corresponding manually annotated mirror masks, covering a variety of daily-life scenes. Third, we conduct extensive experiments to evaluate the proposed method and show that it outperforms the related state-of-the-art detection and segmentation methods. Fourth, we further validate the effectiveness and generalization capability of the proposed semantic awareness contextual contrasted feature learning by applying MirrorNet+ to other vision tasks, i.e., salient object detection and shadow detection. Finally, we provide some applications of mirror segmentation and analyze possible future research directions. Project homepage: https://mhaiyang.github.io/TOMM2022-MirrorNet+/index.html .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨电脑发布了新的文献求助10
1秒前
1秒前
向南完成签到 ,获得积分10
1秒前
1秒前
Hshen完成签到,获得积分10
3秒前
11_aa完成签到,获得积分10
4秒前
7秒前
完美世界应助杨哈哈采纳,获得10
7秒前
幸运幸福发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
怕黑的夏兰完成签到 ,获得积分10
9秒前
bkagyin应助周周采纳,获得10
9秒前
10秒前
11秒前
亮白发布了新的文献求助10
12秒前
我是老大应助木木采纳,获得10
12秒前
缓慢太君发布了新的文献求助10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
cocolu应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
liwanyi完成签到,获得积分20
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
16秒前
随机昵称发布了新的文献求助10
16秒前
alex完成签到,获得积分10
16秒前
Endlessway给宋德宇的求助进行了留言
17秒前
亮白完成签到,获得积分10
18秒前
科研通AI2S应助缓慢太君采纳,获得10
20秒前
周周完成签到,获得积分20
23秒前
24秒前
24秒前
谨慎天空完成签到 ,获得积分10
24秒前
沐雨橙风发布了新的文献求助10
25秒前
周周发布了新的文献求助10
27秒前
小菜狗发布了新的文献求助10
27秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219342
求助须知:如何正确求助?哪些是违规求助? 2868226
关于积分的说明 8159905
捐赠科研通 2535266
什么是DOI,文献DOI怎么找? 1367669
科研通“疑难数据库(出版商)”最低求助积分说明 645090
邀请新用户注册赠送积分活动 618332