Multi-graph Fusion Graph Convolutional Networks with pseudo-label supervision

拓扑图论 计算机科学 图嵌入 图形 嵌入 理论计算机科学 图同构 特征学习 拓扑(电路) 人工智能 模式识别(心理学) 折线图 电压图 数学 组合数学
作者
Yachao Yang,Yanfeng Sun,Fujiao Ju,Shaofan Wang,Junbin Gao,Baocai Yin
出处
期刊:Neural Networks [Elsevier]
卷期号:158: 305-317 被引量:13
标识
DOI:10.1016/j.neunet.2022.11.027
摘要

Graph convolutional networks (GCNs) have become a popular tool for learning unstructured graph data due to their powerful learning ability. Many researchers have been interested in fusing topological structures and node features to extract the correlation information for classification tasks. However, it is inadequate to integrate the embedding from topology and feature spaces to gain the most correlated information. At the same time, most GCN-based methods assume that the topology graph or feature graph is compatible with the properties of GCNs, but this is usually not satisfied since meaningless, missing, or even unreal edges are very common in actual graphs. To obtain a more robust and accurate graph structure, we intend to construct an adaptive graph with topology and feature graphs. We propose Multi-graph Fusion Graph Convolutional Networks with pseudo-label supervision (MFGCN), which learn a connected embedding by fusing the multi-graphs and node features. We can obtain the final node embedding for semi-supervised node classification by propagating node features over multi-graphs. Furthermore, to alleviate the problem of labels missing in semi-supervised classification, a pseudo-label generation mechanism is proposed to generate more reliable pseudo-labels based on the similarity of node features. Extensive experiments on six benchmark datasets demonstrate the superiority of MFGCN over state-of-the-art classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助sssssssoda采纳,获得10
1秒前
1秒前
2秒前
121完成签到,获得积分20
3秒前
3秒前
Zlinco发布了新的文献求助10
5秒前
章早立发布了新的文献求助10
6秒前
飞儿随缘完成签到,获得积分10
6秒前
XM发布了新的文献求助10
6秒前
8秒前
落叶解三秋完成签到,获得积分10
9秒前
二丫完成签到,获得积分20
12秒前
13秒前
Hazel完成签到,获得积分10
13秒前
深情安青应助源妮儿儿采纳,获得10
14秒前
17秒前
18秒前
跪求发布了新的文献求助10
22秒前
23秒前
24秒前
完美世界应助部川苦茶采纳,获得10
25秒前
26秒前
刘彤完成签到,获得积分10
26秒前
Jasper应助绿叶小檗采纳,获得30
27秒前
火箭Lucky完成签到 ,获得积分10
27秒前
27秒前
27秒前
小稻草人完成签到,获得积分10
28秒前
28秒前
29秒前
小稻草人发布了新的文献求助30
30秒前
星辰大海应助可靠的豌豆采纳,获得10
31秒前
Somnolence咩发布了新的文献求助10
31秒前
31秒前
HCLonely应助JoshuaChen采纳,获得10
31秒前
31秒前
isabellae给isabellae的求助进行了留言
31秒前
hh发布了新的文献求助10
31秒前
脑袋空空发布了新的文献求助10
32秒前
所所应助daidai采纳,获得10
32秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206745
求助须知:如何正确求助?哪些是违规求助? 2856198
关于积分的说明 8102939
捐赠科研通 2521287
什么是DOI,文献DOI怎么找? 1354335
科研通“疑难数据库(出版商)”最低求助积分说明 642012
邀请新用户注册赠送积分活动 613207