A 3D Cross-Modality Feature Interaction Network With Volumetric Feature Alignment for Brain Tumor and Tissue Segmentation

计算机科学 人工智能 特征(语言学) 分割 模态(人机交互) 模式识别(心理学) 卷积神经网络 计算机视觉 特征提取 语言学 哲学
作者
Yuzhou Zhuang,Hong Liu,Enmin Song,Chih‐Cheng Hung
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 75-86 被引量:19
标识
DOI:10.1109/jbhi.2022.3214999
摘要

Accurate volumetric segmentation of brain tumors and tissues is beneficial for quantitative brain analysis and brain disease identification in multi-modal Magnetic Resonance (MR) images. Nevertheless, due to the complex relationship between modalities, 3D Fully Convolutional Networks (3D FCNs) using simple multi-modal fusion strategies hardly learn the complex and nonlinear complementary information between modalities. Meanwhile, the indiscriminative feature aggregation between low-level and high-level features easily causes volumetric feature misalignment in 3D FCNs. On the other hand, the 3D convolution operations of 3D FCNs are excellent at modeling local relations but typically inefficient at capturing global relations between distant regions in volumetric images. To tackle these issues, we propose an Aligned Cross-Modality Interaction Network (ACMINet) for segmenting the regions of brain tumors and tissues from MR images. In this network, the cross-modality feature interaction module is first designed to adaptively and efficiently fuse and refine multi-modal features. Secondly, the volumetric feature alignment module is developed for dynamically aligning low-level and high-level features by the learnable volumetric feature deformation field. Thirdly, we propose the volumetric dual interaction graph reasoning module for graph-based global context modeling in spatial and channel dimensions. Our proposed method is applied to brain glioma, vestibular schwannoma, and brain tissue segmentation tasks, and we performed extensive experiments on BraTS2018, BraTS2020, Vestibular Schwannoma, and iSeg-2017 datasets. Experimental results show that ACMINet achieves state-of-the-art segmentation performance on all four benchmark datasets and obtains the highest DSC score of hard-segmented enhanced tumor region on the validation leaderboard of the BraTS2020 challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丢丢发布了新的文献求助10
刚刚
夏蓉完成签到,获得积分10
刚刚
儒雅新波完成签到,获得积分10
1秒前
bkagyin应助FYJY采纳,获得10
2秒前
阿飞飞飞发布了新的文献求助10
3秒前
4秒前
风啊发布了新的文献求助10
4秒前
完美世界应助自由的中蓝采纳,获得10
5秒前
机智的傲白应助小鑫采纳,获得20
5秒前
6秒前
琦诺发布了新的文献求助20
7秒前
7秒前
兰絮关注了科研通微信公众号
9秒前
9秒前
10秒前
10秒前
wcy发布了新的文献求助10
10秒前
nonchem完成签到,获得积分10
10秒前
陶醉觅夏发布了新的文献求助10
11秒前
魁梧的盼望完成签到,获得积分10
11秒前
11秒前
在水一方应助小灰灰采纳,获得10
12秒前
顾矜应助tyh采纳,获得30
13秒前
14秒前
lbm发布了新的文献求助10
14秒前
FYJY发布了新的文献求助10
15秒前
风啊完成签到,获得积分20
15秒前
研友_aLjxNZ发布了新的文献求助20
15秒前
善学以致用应助sam采纳,获得10
16秒前
med1640完成签到,获得积分10
17秒前
这个郭我背了完成签到,获得积分10
18秒前
18秒前
19秒前
期望应助123采纳,获得10
19秒前
19秒前
期望应助昵称采纳,获得10
21秒前
huo应助橙子采纳,获得10
22秒前
小马甲应助普外科老白采纳,获得10
23秒前
淡然安雁发布了新的文献求助10
23秒前
慕青应助Auroar采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302470
求助须知:如何正确求助?哪些是违规求助? 2936959
关于积分的说明 8479422
捐赠科研通 2610753
什么是DOI,文献DOI怎么找? 1425334
科研通“疑难数据库(出版商)”最低求助积分说明 662340
邀请新用户注册赠送积分活动 646652