A 3D Cross-Modality Feature Interaction Network With Volumetric Feature Alignment for Brain Tumor and Tissue Segmentation

计算机科学 人工智能 特征(语言学) 分割 模态(人机交互) 模式识别(心理学) 卷积神经网络 计算机视觉 特征提取 语言学 哲学
作者
Yuzhou Zhuang,Hong Liu,Enmin Song,Chih‐Cheng Hung
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 75-86 被引量:40
标识
DOI:10.1109/jbhi.2022.3214999
摘要

Accurate volumetric segmentation of brain tumors and tissues is beneficial for quantitative brain analysis and brain disease identification in multi-modal Magnetic Resonance (MR) images. Nevertheless, due to the complex relationship between modalities, 3D Fully Convolutional Networks (3D FCNs) using simple multi-modal fusion strategies hardly learn the complex and nonlinear complementary information between modalities. Meanwhile, the indiscriminative feature aggregation between low-level and high-level features easily causes volumetric feature misalignment in 3D FCNs. On the other hand, the 3D convolution operations of 3D FCNs are excellent at modeling local relations but typically inefficient at capturing global relations between distant regions in volumetric images. To tackle these issues, we propose an Aligned Cross-Modality Interaction Network (ACMINet) for segmenting the regions of brain tumors and tissues from MR images. In this network, the cross-modality feature interaction module is first designed to adaptively and efficiently fuse and refine multi-modal features. Secondly, the volumetric feature alignment module is developed for dynamically aligning low-level and high-level features by the learnable volumetric feature deformation field. Thirdly, we propose the volumetric dual interaction graph reasoning module for graph-based global context modeling in spatial and channel dimensions. Our proposed method is applied to brain glioma, vestibular schwannoma, and brain tissue segmentation tasks, and we performed extensive experiments on BraTS2018, BraTS2020, Vestibular Schwannoma, and iSeg-2017 datasets. Experimental results show that ACMINet achieves state-of-the-art segmentation performance on all four benchmark datasets and obtains the highest DSC score of hard-segmented enhanced tumor region on the validation leaderboard of the BraTS2020 challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao发布了新的文献求助10
1秒前
初初见你完成签到,获得积分10
8秒前
11秒前
思源应助淡淡月饼采纳,获得20
11秒前
dd完成签到 ,获得积分10
12秒前
Nayvue发布了新的文献求助10
16秒前
未来的幻想完成签到,获得积分10
18秒前
Kvolu29完成签到,获得积分10
19秒前
长理物电强完成签到,获得积分10
20秒前
若安在完成签到,获得积分10
21秒前
完美世界应助潘特采纳,获得10
22秒前
拼搏问薇完成签到 ,获得积分10
22秒前
单薄乐珍完成签到 ,获得积分0
25秒前
张静枝完成签到 ,获得积分10
25秒前
六步郎完成签到,获得积分10
25秒前
啊怙纲完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
scott_zip完成签到 ,获得积分10
30秒前
gxl完成签到,获得积分0
34秒前
xxx完成签到 ,获得积分10
37秒前
37秒前
努力生活的小柴完成签到,获得积分10
39秒前
41秒前
tangyong完成签到,获得积分10
43秒前
长安发布了新的文献求助10
43秒前
SucceedIn完成签到,获得积分10
44秒前
45秒前
48秒前
海洋岩土12138完成签到 ,获得积分10
49秒前
lzz完成签到 ,获得积分10
49秒前
冬雪完成签到,获得积分10
53秒前
woommoow完成签到,获得积分10
53秒前
aaatan完成签到 ,获得积分10
53秒前
lynn完成签到,获得积分10
54秒前
ABC发布了新的文献求助10
54秒前
回忆完成签到,获得积分10
55秒前
溜了溜了完成签到,获得积分10
58秒前
萧水白完成签到,获得积分10
1分钟前
马桶盖盖子完成签到 ,获得积分10
1分钟前
漆漆漆漆漆完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022