A 3D Cross-Modality Feature Interaction Network With Volumetric Feature Alignment for Brain Tumor and Tissue Segmentation

计算机科学 人工智能 特征(语言学) 分割 模态(人机交互) 模式识别(心理学) 卷积神经网络 计算机视觉 特征提取 语言学 哲学
作者
Yuzhou Zhuang,Hong Liu,Enmin Song,Chih‐Cheng Hung
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 75-86 被引量:40
标识
DOI:10.1109/jbhi.2022.3214999
摘要

Accurate volumetric segmentation of brain tumors and tissues is beneficial for quantitative brain analysis and brain disease identification in multi-modal Magnetic Resonance (MR) images. Nevertheless, due to the complex relationship between modalities, 3D Fully Convolutional Networks (3D FCNs) using simple multi-modal fusion strategies hardly learn the complex and nonlinear complementary information between modalities. Meanwhile, the indiscriminative feature aggregation between low-level and high-level features easily causes volumetric feature misalignment in 3D FCNs. On the other hand, the 3D convolution operations of 3D FCNs are excellent at modeling local relations but typically inefficient at capturing global relations between distant regions in volumetric images. To tackle these issues, we propose an Aligned Cross-Modality Interaction Network (ACMINet) for segmenting the regions of brain tumors and tissues from MR images. In this network, the cross-modality feature interaction module is first designed to adaptively and efficiently fuse and refine multi-modal features. Secondly, the volumetric feature alignment module is developed for dynamically aligning low-level and high-level features by the learnable volumetric feature deformation field. Thirdly, we propose the volumetric dual interaction graph reasoning module for graph-based global context modeling in spatial and channel dimensions. Our proposed method is applied to brain glioma, vestibular schwannoma, and brain tissue segmentation tasks, and we performed extensive experiments on BraTS2018, BraTS2020, Vestibular Schwannoma, and iSeg-2017 datasets. Experimental results show that ACMINet achieves state-of-the-art segmentation performance on all four benchmark datasets and obtains the highest DSC score of hard-segmented enhanced tumor region on the validation leaderboard of the BraTS2020 challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
1秒前
艾小晗发布了新的文献求助20
1秒前
2秒前
赘婿应助ywl采纳,获得10
3秒前
5秒前
TT完成签到 ,获得积分10
5秒前
6秒前
MI完成签到,获得积分20
7秒前
丘比特应助fs采纳,获得10
7秒前
景清发布了新的文献求助10
8秒前
sandra发布了新的文献求助10
10秒前
天天快乐应助直率的初露采纳,获得10
11秒前
12秒前
华仔应助nkpdsy采纳,获得10
12秒前
CC悟了完成签到,获得积分20
15秒前
辛勤的飞烟完成签到,获得积分10
15秒前
16秒前
16秒前
无语的千秋完成签到,获得积分10
17秒前
LBX完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
yx_cheng应助科研通管家采纳,获得20
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
华仔应助科研通管家采纳,获得10
18秒前
yx_cheng应助科研通管家采纳,获得20
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得30
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
情怀应助科研通管家采纳,获得20
19秒前
19秒前
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975661
求助须知:如何正确求助?哪些是违规求助? 3520000
关于积分的说明 11200535
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390