A 3D Cross-Modality Feature Interaction Network With Volumetric Feature Alignment for Brain Tumor and Tissue Segmentation

计算机科学 人工智能 特征(语言学) 分割 模态(人机交互) 模式识别(心理学) 卷积神经网络 计算机视觉 特征提取 语言学 哲学
作者
Yuzhou Zhuang,Hong Liu,Enmin Song,Chih‐Cheng Hung
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 75-86 被引量:40
标识
DOI:10.1109/jbhi.2022.3214999
摘要

Accurate volumetric segmentation of brain tumors and tissues is beneficial for quantitative brain analysis and brain disease identification in multi-modal Magnetic Resonance (MR) images. Nevertheless, due to the complex relationship between modalities, 3D Fully Convolutional Networks (3D FCNs) using simple multi-modal fusion strategies hardly learn the complex and nonlinear complementary information between modalities. Meanwhile, the indiscriminative feature aggregation between low-level and high-level features easily causes volumetric feature misalignment in 3D FCNs. On the other hand, the 3D convolution operations of 3D FCNs are excellent at modeling local relations but typically inefficient at capturing global relations between distant regions in volumetric images. To tackle these issues, we propose an Aligned Cross-Modality Interaction Network (ACMINet) for segmenting the regions of brain tumors and tissues from MR images. In this network, the cross-modality feature interaction module is first designed to adaptively and efficiently fuse and refine multi-modal features. Secondly, the volumetric feature alignment module is developed for dynamically aligning low-level and high-level features by the learnable volumetric feature deformation field. Thirdly, we propose the volumetric dual interaction graph reasoning module for graph-based global context modeling in spatial and channel dimensions. Our proposed method is applied to brain glioma, vestibular schwannoma, and brain tissue segmentation tasks, and we performed extensive experiments on BraTS2018, BraTS2020, Vestibular Schwannoma, and iSeg-2017 datasets. Experimental results show that ACMINet achieves state-of-the-art segmentation performance on all four benchmark datasets and obtains the highest DSC score of hard-segmented enhanced tumor region on the validation leaderboard of the BraTS2020 challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
无极微光应助枫枫829采纳,获得20
1秒前
毛舒敏完成签到 ,获得积分10
2秒前
柔弱飞槐发布了新的文献求助10
4秒前
Transient完成签到,获得积分10
4秒前
完美如冰完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
5秒前
666星爷完成签到,获得积分10
5秒前
在水一方应助Davy_Y采纳,获得10
6秒前
6秒前
smin发布了新的文献求助10
7秒前
李爱国应助小钱钱采纳,获得10
8秒前
刘亦平大美女完成签到,获得积分10
8秒前
Roger35关注了科研通微信公众号
8秒前
lyang完成签到,获得积分10
9秒前
英专小白完成签到,获得积分10
10秒前
swallow完成签到,获得积分10
10秒前
enen完成签到,获得积分10
10秒前
11秒前
赵yh发布了新的文献求助10
12秒前
12秒前
柔弱飞槐完成签到,获得积分10
12秒前
科研通AI2S应助艾嘿采纳,获得10
14秒前
xuan完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
ding应助PP采纳,获得10
14秒前
完美如冰发布了新的文献求助10
15秒前
iNk应助平淡的百招采纳,获得10
15秒前
852应助平淡的百招采纳,获得10
15秒前
大大哈哈完成签到 ,获得积分20
16秒前
16秒前
帅气鹭洋发布了新的文献求助10
16秒前
renew发布了新的文献求助10
17秒前
浮游应助俊秀的笑槐采纳,获得10
17秒前
HgPP完成签到,获得积分20
19秒前
於傲松应助sangsang采纳,获得10
19秒前
研友_VZG7GZ应助sangsang采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883807
求助须知:如何正确求助?哪些是违规求助? 4169216
关于积分的说明 12936623
捐赠科研通 3929578
什么是DOI,文献DOI怎么找? 2156156
邀请新用户注册赠送积分活动 1174580
关于科研通互助平台的介绍 1079365