Microstructure and surface engineering through indium modification on Ni-rich layered cathode materials for enhanced electrochemical performance of lithium-ion batteries

材料科学 锂(药物) 阴极 微观结构 表面改性 离子 表面工程 电化学 化学工程 锂离子电池 纳米技术 电极 电池(电) 冶金 化学 有机化学 内分泌学 物理化学 工程类 功率(物理) 物理 医学 量子力学
作者
Yaxin Zhang,Yue Zhao,Wen Hu,Xiaofen Wang,Rusen Yang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:934: 167862-167862 被引量:6
标识
DOI:10.1016/j.jallcom.2022.167862
摘要

Ni-rich layered lithium transition metal oxides have been considered as one of the most promising cathodes for next-generation lithium-ion batteries (LIBs) because of their high capacities and affordable costs. However, they still suffer bulk and surface structural instability, leading to rapid performance decay and subsequent cathode failure. In this context, Ni-rich layered cathodes with indium modified crystal and surface structures are developed by a simple one-pot calcination approach. Battery tests manifest that the indium modified LiNi0.8Co0.1Mn0.1O2 electrodes exhibit remarkably enhanced rate capability and cycling stability compared to the pristine one, including under high operating voltage condition. Further studies evidence a simultaneous mitigation of intra/inter-granular mechanical cracks and resistive surface films growth, which directly embodied in a dramatically suppressed ohmic loss after long-term cycling. The improved microstructural and surface stability are attributed by the synergistic functions of indium modification. On the one hand, trace amount of In3+ occupy crystalline Li+-site, which not only dissipate the intrinsic lattice strain during cycling, but also reduce Li+/Ni2+ antisite to avoid the undesired layer to rock-salt phase transformation. On the other hand, the rest of indium deplete lithium residues, and form conductive LiInO2 adherent coatings to protect the cathode from side reactions with electrolyte. The present work demonstrates that microstructure and surface engineering through indium modification offers a promising design strategy for further improvements of Ni-rich layered cathodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王佳完成签到,获得积分20
刚刚
1秒前
一个果儿应助Pearl采纳,获得10
1秒前
浮生六记完成签到 ,获得积分10
1秒前
缪欣桐完成签到,获得积分10
2秒前
JamesPei应助科研丽人采纳,获得10
3秒前
香蕉觅云应助贪玩阑香采纳,获得10
4秒前
郭奕沛完成签到,获得积分10
4秒前
求助人员发布了新的文献求助30
6秒前
一点点粽子完成签到,获得积分10
6秒前
科研通AI6应助楼下太吵了采纳,获得10
6秒前
7秒前
kkPi发布了新的文献求助10
9秒前
无语的大碗完成签到,获得积分10
10秒前
英吉利25发布了新的文献求助50
11秒前
11秒前
私欲宝宝发布了新的文献求助10
12秒前
傲娇时光完成签到,获得积分10
12秒前
Akim应助kkPi采纳,获得10
13秒前
紫丁香完成签到 ,获得积分10
14秒前
四叶草哦完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
机智乐蕊完成签到,获得积分10
16秒前
17秒前
故事细腻完成签到 ,获得积分10
17秒前
Zzy0816完成签到,获得积分10
17秒前
棉花完成签到 ,获得积分10
17秒前
无极微光应助学术牛马采纳,获得20
17秒前
18秒前
nanjiab发布了新的文献求助10
18秒前
18秒前
山雀完成签到,获得积分10
20秒前
任炳成完成签到,获得积分20
21秒前
Rowan发布了新的文献求助10
21秒前
kkkkpoa完成签到,获得积分10
22秒前
善良水池完成签到,获得积分10
22秒前
23秒前
Lucy发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600957
求助须知:如何正确求助?哪些是违规求助? 4686530
关于积分的说明 14844417
捐赠科研通 4679086
什么是DOI,文献DOI怎么找? 2539100
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252